Generalized conjugacy in Hamilton-Jacobi theory for fully convex Lagrangians

被引:0
|
作者
Goebel, R [1 ]
Rockafellar, RT
机构
[1] Univ Calif Santa Barbara, Ctr Control Engn & Computat, Santa Barbara, CA 93106 USA
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
convex value functions; inf-convolution; Hopf-Lax formula; nonsmooth Hamiltonian dynamics; generalized conjugacy; fully convex Lagrangians; optimal control;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Control problems with fully convex Lagrangians and convex initial costs are considered. Generalized conjugacy and envelope representation in terms of a dualizing kernel are employed to recover the initial cost from the value function at some, fixed future time, leading to a generalization of the cancellation rule for inf-convolution. Such recovery is possible subject to persistence of trajectories of a generalized Hamiltonian system, associated with the Lagrangian. Global analysis of Hamiltonian trajectories is carried out, leading to conditions on the Hamiltonian, and the corresponding Lagrangian, guaranteeing persistence of the trajectories.
引用
收藏
页码:463 / 473
页数:11
相关论文
共 50 条
  • [21] Multitime Hamilton-Jacobi Theory
    Udriste, Constantin
    Matei, Laura
    Duca, Iulian
    ISTASC '09: PROCEEDINGS OF THE 9TH WSEAS INTERNATIONAL CONFERENCE ON SYSTEMS THEORY AND SCIENTIFIC COMPUTATION, 2009, : 129 - +
  • [22] Incompleteness of the Hamilton-Jacobi theory
    Lemos, Nivaldo A.
    AMERICAN JOURNAL OF PHYSICS, 2014, 82 (09) : 848 - 852
  • [23] Geometric Hamilton-Jacobi theory
    Carinena, Jose F.
    Gracia, Xavier
    Marmo, Giuseppe
    Martinez, Eduardo
    Munoz-Lecanda, Miguel C.
    Roman-Roy, Narciso
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (07) : 1417 - 1458
  • [24] Discrete Hamilton-Jacobi theory
    Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093-0112, United States
    不详
    SIAM J Control Optim, 4 (1829-1856):
  • [25] PHASE-SPACE APPROACH TO GENERALIZED HAMILTON-JACOBI THEORY
    SAMUEL, J
    JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (01) : 55 - 59
  • [26] Multitime Hamilton-Jacobi Theory
    Udriste, Constantin
    Matei, Laura
    Duca, Iulian
    PROCEEDINGS OF THE 8TH WSEAS INTERNATIONAL CONFERENCE ON APPLIED COMPUTER AND APPLIED COMPUTATIONAL SCIENCE: APPLIED COMPUTER AND APPLIED COMPUTATIONAL SCIENCE, 2009, : 509 - +
  • [27] Hamilton-Jacobi theory for a generalized optimal stopping time problem
    Ye, JJ
    Zhu, QJ
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 34 (07) : 1029 - 1053
  • [28] On Jacobi's theorem in Hamilton-Jacobi theory
    Samelson, H
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2001, 31 (02) : 619 - 623
  • [29] GENERALIZED CHARACTERISTICS OF HAMILTON-JACOBI EQUATIONS
    SUBBOTIN, AI
    TARASYEV, AM
    USHAKOV, VN
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 1994, 32 (02) : 157 - 163
  • [30] Faithful representations for convex Hamilton-Jacobi equations
    Rampazzo, F
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 44 (03) : 867 - 884