Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms

被引:108
|
作者
Goto, Shinichi [1 ,2 ,3 ]
Mahara, Keitaro [4 ]
Beussink-Nelson, Lauren [5 ]
Ikura, Hidehiko [3 ]
Katsumata, Yoshinori [3 ]
Endo, Jin [3 ]
Gaggin, Hanna K. [2 ,6 ]
Shah, Sanjiv J. [5 ]
Itabashi, Yuji [3 ]
MacRae, Calum A. [1 ,2 ]
Deo, Rahul C. [1 ,2 ,7 ,8 ,9 ]
机构
[1] Brigham & Womens Hosp, Dept Med, One Brave Idea & Div Cardiovasc Med, Boston, MA 02115 USA
[2] Harvard Med Sch, Boston, MA 02115 USA
[3] Keio Univ, Dept Cardiol, Shinjuku Ku, Sch Med, Tokyo, Japan
[4] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA USA
[5] Northwestern Univ, Feinberg Cardiovasc Res Inst, Div Cardiol, Feinberg Sch Med, Chicago, IL USA
[6] Massachusetts Gen Hosp, Div Cardiol, Boston, MA USA
[7] Univ Calif San Francisco, Ctr Digital Hlth Innovat, San Francisco, CA 94143 USA
[8] Univ Calif San Francisco, Dept Med, San Francisco, CA 94143 USA
[9] Northwestern Univ, Dept Prevent Med, Feinberg Sch Med, Chicago, IL 60611 USA
关键词
SYSTEMIC AMYLOIDOSIS; AORTIC-STENOSIS; PREVALENCE; PREDICTORS; VOLTAGE;
D O I
10.1038/s41467-021-22877-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Patients with rare conditions such as cardiac amyloidosis (CA) are difficult to identify, given the similarity of disease manifestations to more prevalent disorders. The deployment of approved therapies for CA has been limited by delayed diagnosis of this disease. Artificial intelligence (AI) could enable detection of rare diseases. Here we present a pipeline for CA detection using AI models with electrocardiograms (ECG) or echocardiograms as inputs. These models, trained and validated on 3 and 5 academic medical centers (AMC) respectively, detect CA with C-statistics of 0.85-0.91 for ECG and 0.89-1.00 for echocardiography. Simulating deployment on 2 AMCs indicated a positive predictive value (PPV) for the ECG model of 3-4% at 52-71% recall. Pre-screening with ECG enhance the echocardiography model performance at 67% recall from PPV of 33% to PPV of 74-77%. In conclusion, we developed an automated strategy to augment CA detection, which should be generalizable to other rare cardiac diseases. Cardiac amyloidosis is difficult to identify, given low prevalence and similarity of the symptoms to more prevalent disorders. Here the authors present a multi-modality, artificial intelligence-enabled pipeline, that enables automated detection of cardiac amyloidosis from inexpensive and accessible measures.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Detection of ATTR cardiac amyloidosis using a novel artificial intelligence algorithm for wearable-adapted noisy single-lead electrocardiograms
    Sangha, V
    Oikonomou, E. K.
    Khunte, A.
    Miller, E. J.
    Khera, R.
    EUROPEAN HEART JOURNAL, 2024, 45
  • [42] Early Prediction of Pulmonary Hypertension Using Artificial Intelligence-enabled Electrocardiogram
    Luo, C. J.
    Qiu, H.
    Gong, S.
    Zhao, Q.
    Li, H.
    Yang, J.
    Chen, H.
    Niu, D.
    Wang, L.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2024, 209
  • [43] Detection of ATTR cardiac amyloidosis using a novel artificial intelligence algorithm for wearable-adapted noisy single-lead electrocardiograms
    Sangha, V
    Oikonomou, E. K.
    Khunte, A.
    Miller, E. J.
    Khera, R.
    EUROPEAN HEART JOURNAL, 2024, 45
  • [44] Artificial Intelligence-Enabled End-To-End Detection and Assessment of Alzheimer's Disease Using Voice
    Agbavor, Felix
    Liang, Hualou
    BRAIN SCIENCES, 2023, 13 (01)
  • [45] Detection of Left Ventricular Systolic Dysfunction Using an Artificial Intelligence-Enabled Chest X-Ray
    Hsiang, Chih-Weim
    Lin, Chin
    Liu, Wen-Cheng
    Lin, Chin-Sheng
    Chang, Wei-Chou
    Hsu, Hsian-He
    Huang, Guo-Shu
    Lou, Yu-Sheng
    Lee, Chia-Cheng
    Wang, Chih-Hung
    Fang, Wen-Hui
    CANADIAN JOURNAL OF CARDIOLOGY, 2022, 38 (06) : 763 - 773
  • [46] Characterizing the progression of subclinical cardiac amyloidosis through artificial intelligence applied to electrocardiographic images and echocardiograms
    Oikonomou, E. K.
    Sangha, V.
    Coppi, A.
    Krumholz, H. M.
    Miller, E. J.
    Khera, R.
    EUROPEAN HEART JOURNAL, 2024, 45
  • [47] A COMPREHENSIVE ARTIFICIAL INTELLIGENCE-ENABLED ELECTROCARDIOGRAM INTERPRETATION PROGRAM
    Kashou, Anthony
    Ko, Wei-Yin
    Attia, Zachi Itzhak
    Cohen, Michall
    Friedman, Paul
    Noseworthy, Peter
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2020, 75 (11) : 3504 - 3504
  • [48] Smart Infrastructures: Artificial Intelligence-Enabled Lifecycle Automation
    Fortuna, Carolina
    Yetgin, Halil
    Mohorcic, Mihael
    IEEE INDUSTRIAL ELECTRONICS MAGAZINE, 2023, 17 (02) : 37 - 47
  • [49] Clinical perspectives on the adoption of the artificial intelligence-enabled electrocardiogram
    Khurshid, Shaan
    JOURNAL OF ELECTROCARDIOLOGY, 2023, 81 : 142 - 145
  • [50] ARTIFICIAL INTELLIGENCE-ENABLED ECG ALGORITHM FOR THE SCREENING OF DIABETES
    Sharma, Abhinav
    Giannetti, Nadia
    Buckridge, David
    Ni, Jiayi
    Thao Huynh
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2020, 75 (11) : 3542 - 3542