Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms

被引:108
|
作者
Goto, Shinichi [1 ,2 ,3 ]
Mahara, Keitaro [4 ]
Beussink-Nelson, Lauren [5 ]
Ikura, Hidehiko [3 ]
Katsumata, Yoshinori [3 ]
Endo, Jin [3 ]
Gaggin, Hanna K. [2 ,6 ]
Shah, Sanjiv J. [5 ]
Itabashi, Yuji [3 ]
MacRae, Calum A. [1 ,2 ]
Deo, Rahul C. [1 ,2 ,7 ,8 ,9 ]
机构
[1] Brigham & Womens Hosp, Dept Med, One Brave Idea & Div Cardiovasc Med, Boston, MA 02115 USA
[2] Harvard Med Sch, Boston, MA 02115 USA
[3] Keio Univ, Dept Cardiol, Shinjuku Ku, Sch Med, Tokyo, Japan
[4] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA USA
[5] Northwestern Univ, Feinberg Cardiovasc Res Inst, Div Cardiol, Feinberg Sch Med, Chicago, IL USA
[6] Massachusetts Gen Hosp, Div Cardiol, Boston, MA USA
[7] Univ Calif San Francisco, Ctr Digital Hlth Innovat, San Francisco, CA 94143 USA
[8] Univ Calif San Francisco, Dept Med, San Francisco, CA 94143 USA
[9] Northwestern Univ, Dept Prevent Med, Feinberg Sch Med, Chicago, IL 60611 USA
关键词
SYSTEMIC AMYLOIDOSIS; AORTIC-STENOSIS; PREVALENCE; PREDICTORS; VOLTAGE;
D O I
10.1038/s41467-021-22877-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Patients with rare conditions such as cardiac amyloidosis (CA) are difficult to identify, given the similarity of disease manifestations to more prevalent disorders. The deployment of approved therapies for CA has been limited by delayed diagnosis of this disease. Artificial intelligence (AI) could enable detection of rare diseases. Here we present a pipeline for CA detection using AI models with electrocardiograms (ECG) or echocardiograms as inputs. These models, trained and validated on 3 and 5 academic medical centers (AMC) respectively, detect CA with C-statistics of 0.85-0.91 for ECG and 0.89-1.00 for echocardiography. Simulating deployment on 2 AMCs indicated a positive predictive value (PPV) for the ECG model of 3-4% at 52-71% recall. Pre-screening with ECG enhance the echocardiography model performance at 67% recall from PPV of 33% to PPV of 74-77%. In conclusion, we developed an automated strategy to augment CA detection, which should be generalizable to other rare cardiac diseases. Cardiac amyloidosis is difficult to identify, given low prevalence and similarity of the symptoms to more prevalent disorders. Here the authors present a multi-modality, artificial intelligence-enabled pipeline, that enables automated detection of cardiac amyloidosis from inexpensive and accessible measures.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Artificial intelligence-enabled decision support in nephrology
    Loftus, Tyler J.
    Shickel, Benjamin
    Ozrazgat-Baslanti, Tezcan
    Ren, Yuanfang
    Glicksberg, Benjamin S.
    Cao, Jie
    Singh, Karandeep
    Chan, Lili
    Nadkarni, Girish N.
    Bihorac, Azra
    NATURE REVIEWS NEPHROLOGY, 2022, 18 (07) : 452 - 465
  • [32] Artificial intelligence-enabled detection and assessment of Parkinson's disease using nocturnal breathing signals
    Yang, Yuzhe
    Yuan, Yuan
    Zhang, Guo
    Wang, Hao
    Chen, Ying-Cong
    Liu, Yingcheng
    Tarolli, Christopher G.
    Crepeau, Daniel
    Bukartyk, Jan
    Junna, Mithri R.
    Videnovic, Aleksandar
    Ellis, Terry D.
    Lipford, Melissa C.
    Dorsey, Ray
    Katabi, Dina
    NATURE MEDICINE, 2022, 28 (10) : 2207 - +
  • [33] Artificial intelligence-enabled atrial fibrillation detection using smartwatches: current status and future perspectives
    Papalamprakopoulou, Zoi
    Stavropoulos, Dimitrios
    Moustakidis, Serafeim
    Avgerinos, Dimitrios
    Efremidis, Michael
    Kampaktsis, Polydoros N.
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2024, 11
  • [34] Artificial Intelligence-Enabled Traffic Monitoring System
    Mandal, Vishal
    Mussah, Abdul Rashid
    Jin, Peng
    Adu-Gyamfi, Yaw
    SUSTAINABILITY, 2020, 12 (21) : 1 - 21
  • [35] Artificial intelligence-enabled detection and assessment of Parkinson’s disease using nocturnal breathing signals
    Yuzhe Yang
    Yuan Yuan
    Guo Zhang
    Hao Wang
    Ying-Cong Chen
    Yingcheng Liu
    Christopher G. Tarolli
    Daniel Crepeau
    Jan Bukartyk
    Mithri R. Junna
    Aleksandar Videnovic
    Terry D. Ellis
    Melissa C. Lipford
    Ray Dorsey
    Dina Katabi
    Nature Medicine, 2022, 28 : 2207 - 2215
  • [36] Detection of Right and Left Ventricular Dysfunction in Pediatric Patients Using Artificial Intelligence-Enabled ECGs
    Anjewierden, Scott
    O'Sullivan, Donnchadh
    Mangold, Kathryn E.
    Greason, Grace
    Attia, Itzhak Zachi
    Lopez-Jimenez, Francisco
    Friedman, Paul A.
    Asirvatham, Samuel J.
    Anderson, Jason
    Eidem, Benjamin W.
    Johnson, Jonathan N.
    Prakash, Shisheer Havangi
    Niaz, Talha
    Madhavan, Malini
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2024, 13 (21):
  • [37] ARTIFICIAL INTELLIGENCE-ENABLED AUTOMATED WHOLE PANCREAS FAT ESTIMATION ON MAGNETIC RESONANCE IMAGING
    Janssens, Laurens
    Nugen, Fred
    Korfiatis, Panagiotis
    Takahashi, Hiroaki
    Harper, Kelly
    Doering, Karen
    Erickson, Bradley
    Takahashi, Naoki
    Chandrasekhara, Vinay
    Vege, Santhi Swaroop
    Goenka, Ajit H.
    Majumder, Shounak
    GASTROENTEROLOGY, 2024, 166 (05) : S1048 - S1049
  • [38] Monitoring Glaucomatous Functional Loss Using an Artificial Intelligence-Enabled Dashboard
    Yousefi, Siamak
    Elze, Tobias
    Pasquale, Louis R.
    Saeedi, Osamah
    Wang, Mengyu
    Shen, Lucy Q.
    Wellik, Sarah R.
    De Moraes, Carlos G.
    Myers, Jonathan S.
    Boland, Michael, V
    OPHTHALMOLOGY, 2020, 127 (09) : 1170 - 1178
  • [39] Internet-of-Things-Assisted Artificial Intelligence-Enabled Drowsiness Detection Framework
    Soman, Sibu Philip
    Kumar, G. Senthil
    Abubeker, K. M.
    IEEE SENSORS LETTERS, 2023, 7 (07)
  • [40] Performance and clinical utility of an artificial intelligence-enabled tool for pulmonary embolism detection
    Ayobi, Angela
    Chang, Peter D.
    Chow, Daniel S.
    Weinberg, Brent D.
    Tassy, Maxime
    Franciosini, Angelo
    Scudeler, Marlene
    Quenet, Sarah
    Avare, Christophe
    Chaibi, Yasmina
    CLINICAL IMAGING, 2024, 113