Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms

被引:108
|
作者
Goto, Shinichi [1 ,2 ,3 ]
Mahara, Keitaro [4 ]
Beussink-Nelson, Lauren [5 ]
Ikura, Hidehiko [3 ]
Katsumata, Yoshinori [3 ]
Endo, Jin [3 ]
Gaggin, Hanna K. [2 ,6 ]
Shah, Sanjiv J. [5 ]
Itabashi, Yuji [3 ]
MacRae, Calum A. [1 ,2 ]
Deo, Rahul C. [1 ,2 ,7 ,8 ,9 ]
机构
[1] Brigham & Womens Hosp, Dept Med, One Brave Idea & Div Cardiovasc Med, Boston, MA 02115 USA
[2] Harvard Med Sch, Boston, MA 02115 USA
[3] Keio Univ, Dept Cardiol, Shinjuku Ku, Sch Med, Tokyo, Japan
[4] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA USA
[5] Northwestern Univ, Feinberg Cardiovasc Res Inst, Div Cardiol, Feinberg Sch Med, Chicago, IL USA
[6] Massachusetts Gen Hosp, Div Cardiol, Boston, MA USA
[7] Univ Calif San Francisco, Ctr Digital Hlth Innovat, San Francisco, CA 94143 USA
[8] Univ Calif San Francisco, Dept Med, San Francisco, CA 94143 USA
[9] Northwestern Univ, Dept Prevent Med, Feinberg Sch Med, Chicago, IL 60611 USA
关键词
SYSTEMIC AMYLOIDOSIS; AORTIC-STENOSIS; PREVALENCE; PREDICTORS; VOLTAGE;
D O I
10.1038/s41467-021-22877-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Patients with rare conditions such as cardiac amyloidosis (CA) are difficult to identify, given the similarity of disease manifestations to more prevalent disorders. The deployment of approved therapies for CA has been limited by delayed diagnosis of this disease. Artificial intelligence (AI) could enable detection of rare diseases. Here we present a pipeline for CA detection using AI models with electrocardiograms (ECG) or echocardiograms as inputs. These models, trained and validated on 3 and 5 academic medical centers (AMC) respectively, detect CA with C-statistics of 0.85-0.91 for ECG and 0.89-1.00 for echocardiography. Simulating deployment on 2 AMCs indicated a positive predictive value (PPV) for the ECG model of 3-4% at 52-71% recall. Pre-screening with ECG enhance the echocardiography model performance at 67% recall from PPV of 33% to PPV of 74-77%. In conclusion, we developed an automated strategy to augment CA detection, which should be generalizable to other rare cardiac diseases. Cardiac amyloidosis is difficult to identify, given low prevalence and similarity of the symptoms to more prevalent disorders. Here the authors present a multi-modality, artificial intelligence-enabled pipeline, that enables automated detection of cardiac amyloidosis from inexpensive and accessible measures.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Artificial intelligence-enabled smart city construction
    Jiang, Yanxu
    Han, Linfei
    Gao, Yifang
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (18): : 19501 - 19521
  • [22] Artificial intelligence-enabled enterprise information systems
    Zdravkovic, Milan
    Panetto, Herve
    ENTERPRISE INFORMATION SYSTEMS, 2022, 16 (05)
  • [23] Artificial intelligence-enabled electrocardiography contributes to hyperthyroidism detection and outcome prediction
    Chin Lin
    Feng-Chih Kuo
    Tom Chau
    Jui-Hu Shih
    Chin-Sheng Lin
    Chien-Chou Chen
    Chia-Cheng Lee
    Shih-Hua Lin
    Communications Medicine, 4 (1):
  • [24] HEPATIC ENCEPHALOPATHY DETECTION VIA ARTIFICIAL INTELLIGENCE-ENABLED VOICE ANALYTICS
    Penrice, Daniel
    Yerrapragada, Gayathri
    Hara, Kamalpreet
    Arunachalam, Shivaram Poigai
    Simonetto, Douglas A.
    HEPATOLOGY, 2022, 76 : S1184 - S1185
  • [25] Comprehensive clinical application analysis of artificial intelligence-enabled electrocardiograms for screening multiple valvular heart diseases
    Lin, Yu-Ting
    Lin, Chin-Sheng
    Tsai, Chien-Sung
    Tsai, Dung-Jang
    Lou, Yu-Sheng
    Fang, Wen-Hui
    Lee, Yung-Tsai
    Lin, Chin
    AGING-US, 2024, 16 (10): : 8717 - 8731
  • [26] Prediction of certainty in artificial intelligence-enabled electrocardiography
    Demolder, Anthony
    Nauwynck, Maxime
    De Pauw, Michel
    De Buyzere, Marc
    Duytschaever, Mattias
    Timmermans, Frank
    De Pooter, Jan
    JOURNAL OF ELECTROCARDIOLOGY, 2024, 83 : 71 - 79
  • [27] Artificial intelligence-enabled decision support in nephrology
    Tyler J. Loftus
    Benjamin Shickel
    Tezcan Ozrazgat-Baslanti
    Yuanfang Ren
    Benjamin S. Glicksberg
    Jie Cao
    Karandeep Singh
    Lili Chan
    Girish N. Nadkarni
    Azra Bihorac
    Nature Reviews Nephrology, 2022, 18 : 452 - 465
  • [28] Artificial intelligence-enabled smart city construction
    Yanxu Jiang
    Linfei Han
    Yifang Gao
    The Journal of Supercomputing, 2022, 78 : 19501 - 19521
  • [29] A BREAKTHROUGH IN ARTIFICIAL INTELLIGENCE-ENABLED MATERIALS DISCOVERY
    Bailey, Mary Page
    Chemical Engineering (United States), 2021, 128 (01):
  • [30] Clinical Evaluation of Artificial Intelligence-Enabled Interventions
    Hogg, H. D. Jeffry
    Martindale, Alexander P. L.
    Liu, Xiaoxuan
    Denniston, Alastair K.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2024, 65 (10)