Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms

被引:108
|
作者
Goto, Shinichi [1 ,2 ,3 ]
Mahara, Keitaro [4 ]
Beussink-Nelson, Lauren [5 ]
Ikura, Hidehiko [3 ]
Katsumata, Yoshinori [3 ]
Endo, Jin [3 ]
Gaggin, Hanna K. [2 ,6 ]
Shah, Sanjiv J. [5 ]
Itabashi, Yuji [3 ]
MacRae, Calum A. [1 ,2 ]
Deo, Rahul C. [1 ,2 ,7 ,8 ,9 ]
机构
[1] Brigham & Womens Hosp, Dept Med, One Brave Idea & Div Cardiovasc Med, Boston, MA 02115 USA
[2] Harvard Med Sch, Boston, MA 02115 USA
[3] Keio Univ, Dept Cardiol, Shinjuku Ku, Sch Med, Tokyo, Japan
[4] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA USA
[5] Northwestern Univ, Feinberg Cardiovasc Res Inst, Div Cardiol, Feinberg Sch Med, Chicago, IL USA
[6] Massachusetts Gen Hosp, Div Cardiol, Boston, MA USA
[7] Univ Calif San Francisco, Ctr Digital Hlth Innovat, San Francisco, CA 94143 USA
[8] Univ Calif San Francisco, Dept Med, San Francisco, CA 94143 USA
[9] Northwestern Univ, Dept Prevent Med, Feinberg Sch Med, Chicago, IL 60611 USA
关键词
SYSTEMIC AMYLOIDOSIS; AORTIC-STENOSIS; PREVALENCE; PREDICTORS; VOLTAGE;
D O I
10.1038/s41467-021-22877-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Patients with rare conditions such as cardiac amyloidosis (CA) are difficult to identify, given the similarity of disease manifestations to more prevalent disorders. The deployment of approved therapies for CA has been limited by delayed diagnosis of this disease. Artificial intelligence (AI) could enable detection of rare diseases. Here we present a pipeline for CA detection using AI models with electrocardiograms (ECG) or echocardiograms as inputs. These models, trained and validated on 3 and 5 academic medical centers (AMC) respectively, detect CA with C-statistics of 0.85-0.91 for ECG and 0.89-1.00 for echocardiography. Simulating deployment on 2 AMCs indicated a positive predictive value (PPV) for the ECG model of 3-4% at 52-71% recall. Pre-screening with ECG enhance the echocardiography model performance at 67% recall from PPV of 33% to PPV of 74-77%. In conclusion, we developed an automated strategy to augment CA detection, which should be generalizable to other rare cardiac diseases. Cardiac amyloidosis is difficult to identify, given low prevalence and similarity of the symptoms to more prevalent disorders. Here the authors present a multi-modality, artificial intelligence-enabled pipeline, that enables automated detection of cardiac amyloidosis from inexpensive and accessible measures.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms
    Shinichi Goto
    Keitaro Mahara
    Lauren Beussink-Nelson
    Hidehiko Ikura
    Yoshinori Katsumata
    Jin Endo
    Hanna K. Gaggin
    Sanjiv J. Shah
    Yuji Itabashi
    Calum A. MacRae
    Rahul C. Deo
    Nature Communications, 12
  • [2] Artificial intelligence-enabled classification of hypertrophic heart diseases using electrocardiograms
    Haimovich, Julian S.
    Diamant, Nate
    Khurshid, Shaan
    Di Achille, Paolo
    Reeder, Christopher
    Friedman, Sam
    Singh, Pulkit
    Spurlock, Walter
    Ellinor, Patrick T.
    Philippakis, Anthony
    Batra, Puneet
    Ho, Jennifer E.
    Lubitz, Steven A.
    CARDIOVASCULAR DIGITAL HEALTH JOURNAL, 2023, 4 (02): : 48 - 59
  • [3] ARTIFICIAL INTELLIGENCE-ENABLED PREDICTION OF ATRIAL FIBRILLATION EVENTS USING MOBILE ELECTROCARDIOGRAMS
    Nguyen, Dan
    Raghunath, Ananditha
    Schram, Matthew
    Albert, Dave
    Gollakota, Shyamnath
    Shapiro, Linda
    Raghav, Arun
    Sridhar, Mahankali
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2022, 79 (09) : 2054 - 2054
  • [4] Multinational Validation of Fully Automated Diagnostic Reports using Artificial Intelligence-enabled Application for ECG Images
    Khunte, Akshay
    Sangha, Veer
    Oikonomou, Evangelos
    Dhingra, Lovedeep
    Aminorroaya, Arya
    Coppi, Andreas
    Shankar, Sumukh Vasisht
    Mortazavi, Bobak
    Bhatt, Deepak
    Krumholz, Harlan
    Nadkarni, Girish
    Vaid, Akhil
    Khera, Rohan
    CIRCULATION, 2024, 150
  • [5] DETECTION OF AORTIC STENOSIS USING AN ARTIFICIAL INTELLIGENCE-ENABLED ELECTROCARDIOGRAM
    Shelly, Michal
    Attia, Zachi Itzhak
    Ko, Wei-Yin
    Ito, Saki
    Essayagh, Benjamin
    Michelena, Hector I.
    Carter, Rickey
    Sarano, Maurice
    Friedman, Paul
    Oh, Jae K.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2020, 75 (11) : 2115 - 2115
  • [6] Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram
    Attia, Zachi I.
    Kapa, Suraj
    Lopez-Jimenez, Francisco
    McKie, Paul M.
    Ladewig, Dorothy J.
    Satam, Gaurav
    Pellikka, Patricia A.
    Enriquez-Sarano, Maurice
    Noseworthy, Peter A.
    Munger, Thomas M.
    Asirvatham, Samuel J.
    Scott, Christopher G.
    Carter, Rickey E.
    Friedman, Paul A.
    NATURE MEDICINE, 2019, 25 (01) : 70 - +
  • [7] Artificial intelligence-enabled mobile electrocardiograms for event prediction in paroxysmal atrial fibrillation
    Raghunath, Ananditha
    Nguyen, Dan D.
    Schram, Matthew
    Albert, David
    Gollakota, Shyamnath
    Shapiro, Linda
    Sridhar, Arun R.
    CARDIOVASCULAR DIGITAL HEALTH JOURNAL, 2023, 4 (01): : 21 - 28
  • [8] Prognostic assessment based on the trajectory of artificial intelligence-enabled electrocardiograms for age estimation
    Hwang, T.
    You, S. C.
    Kim, S.
    Eom, S.
    Boo, D.
    Kim, D.
    Kim, T. H.
    Uhm, J. S.
    Pak, H. N.
    Lee, M. H.
    Yu, H. T.
    Joung, B.
    EUROPEAN HEART JOURNAL, 2024, 45
  • [9] Detection of Left Atrial Myopathy Using Artificial Intelligence-Enabled Electrocardiography
    Verbrugge, Frederik H.
    Reddy, Yogesh N. V.
    Attia, Zachi I.
    Friedman, Paul A.
    Noseworthy, Peter A.
    Lopez-Jimenez, Francisco
    Kapa, Suraj
    Borlaug, Barry A.
    CIRCULATION-HEART FAILURE, 2022, 15 (01) : E008176
  • [10] Artificial intelligence-enabled prediction of chemotherapy-induced cardiotoxicity from baseline electrocardiograms
    Ryuichiro Yagi
    Shinichi Goto
    Yukihiro Himeno
    Yoshinori Katsumata
    Masahiro Hashimoto
    Calum A. MacRae
    Rahul C. Deo
    Nature Communications, 15