Substructuring Waveform Relaxation Methods for Parabolic Optimal Control Problems

被引:1
|
作者
Mandal, Bankim C. [1 ]
机构
[1] Indian Inst Technol Bhubaneswar, Sch Basic Sci, Bhubaneswar 752050, Odisha, India
来源
关键词
Dirichlet-Neumann; Neumann-Neumann; Waveform relaxation; Domain decomposition methods; Optimal control problems; DOMAIN DECOMPOSITION METHODS; DIRICHLET-NEUMANN; ELLIPTIC PROBLEMS; ITERATIVE METHOD;
D O I
10.1007/978-981-13-1595-4_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study in this paper Dirichlet-Neumann and Neumann-Neumann waveform relaxation methods for the parallel solution of linear-quadratic parabolic optimal control problems, originating from the examples of transient optimal heating with distributed control. Unlike in the case of single linear or nonlinear parabolic problem, we need to solve here two coupled parabolic problems that arise as a part of optimality system for the optimal control problem. We present the detail algorithms for the case of two non-overlapping subdomains and show conditional convergence properties in few special cases. We illustrate our findings with numerical results.
引用
收藏
页码:485 / 494
页数:10
相关论文
共 50 条