Substructuring Waveform Relaxation Methods for Parabolic Optimal Control Problems

被引:1
|
作者
Mandal, Bankim C. [1 ]
机构
[1] Indian Inst Technol Bhubaneswar, Sch Basic Sci, Bhubaneswar 752050, Odisha, India
来源
关键词
Dirichlet-Neumann; Neumann-Neumann; Waveform relaxation; Domain decomposition methods; Optimal control problems; DOMAIN DECOMPOSITION METHODS; DIRICHLET-NEUMANN; ELLIPTIC PROBLEMS; ITERATIVE METHOD;
D O I
10.1007/978-981-13-1595-4_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study in this paper Dirichlet-Neumann and Neumann-Neumann waveform relaxation methods for the parallel solution of linear-quadratic parabolic optimal control problems, originating from the examples of transient optimal heating with distributed control. Unlike in the case of single linear or nonlinear parabolic problem, we need to solve here two coupled parabolic problems that arise as a part of optimality system for the optimal control problem. We present the detail algorithms for the case of two non-overlapping subdomains and show conditional convergence properties in few special cases. We illustrate our findings with numerical results.
引用
收藏
页码:485 / 494
页数:10
相关论文
共 50 条
  • [31] OPTIMAL-CONTROL OF PARABOLIC TRANSMISSION PROBLEMS
    DASILVEIRA, MA
    MATEMATICA APLICADA E COMPUTACIONAL, 1987, 6 (02): : 181 - 194
  • [32] On the solution stability of parabolic optimal control problems
    Alberto Domínguez Corella
    Nicolai Jork
    Vladimir M. Veliov
    Computational Optimization and Applications, 2023, 86 : 1035 - 1079
  • [33] Relaxation and controllability in optimal control problems
    Avakov, E. R.
    Magaril-Il'yaev, G. G.
    SBORNIK MATHEMATICS, 2017, 208 (05) : 585 - 619
  • [34] Comparisons of two iteration methods for time-harmonic parabolic optimal control problems
    Liao, Li-Dan
    Ai, Xia
    Li, Rui-Xia
    Li, Di -Gen
    Xu, Wei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 159 : 44 - 59
  • [35] Adaptive space-time finite element methods for parabolic optimal control problems
    Langer, Ulrich
    Schafelner, Andreas
    JOURNAL OF NUMERICAL MATHEMATICS, 2022, 30 (04) : 247 - 266
  • [36] Implicit Taylor methods for parabolic problems with nonsmooth data and applications to optimal heat control
    Al-Zanaidi, MA
    Grossmann, C
    Noack, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 188 (01) : 121 - 149
  • [37] Simultaneous Space-Time Finite Element Methods for Parabolic Optimal Control Problems
    Langer, Ulrich
    Schafelner, Andreas
    LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2021), 2022, 13127 : 314 - 321
  • [38] Relaxation methods for hyperbolic PDE mixed-integer optimal control problems
    Hante, Falk M.
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2017, 38 (06): : 1103 - 1110
  • [39] Linear multistep methods for optimal control problems and applications to hyperbolic relaxation systems
    Albi, G.
    Herty, M.
    Pareschi, L.
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 354 : 460 - 477
  • [40] Existence of Optimal Shapes in Parabolic Bilinear Optimal Control Problems
    Idriss Mazari-Fouquer
    Archive for Rational Mechanics and Analysis, 2024, 248