Substructuring Waveform Relaxation Methods for Parabolic Optimal Control Problems

被引:1
|
作者
Mandal, Bankim C. [1 ]
机构
[1] Indian Inst Technol Bhubaneswar, Sch Basic Sci, Bhubaneswar 752050, Odisha, India
来源
关键词
Dirichlet-Neumann; Neumann-Neumann; Waveform relaxation; Domain decomposition methods; Optimal control problems; DOMAIN DECOMPOSITION METHODS; DIRICHLET-NEUMANN; ELLIPTIC PROBLEMS; ITERATIVE METHOD;
D O I
10.1007/978-981-13-1595-4_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study in this paper Dirichlet-Neumann and Neumann-Neumann waveform relaxation methods for the parallel solution of linear-quadratic parabolic optimal control problems, originating from the examples of transient optimal heating with distributed control. Unlike in the case of single linear or nonlinear parabolic problem, we need to solve here two coupled parabolic problems that arise as a part of optimality system for the optimal control problem. We present the detail algorithms for the case of two non-overlapping subdomains and show conditional convergence properties in few special cases. We illustrate our findings with numerical results.
引用
收藏
页码:485 / 494
页数:10
相关论文
共 50 条
  • [21] Error estimates of mixed methods for optimal control problems governed by parabolic equations
    Xing, Xaoqing
    Chen, Yanping
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 75 (06) : 735 - 754
  • [22] Nested multigrid methods for time-periodic, parabolic optimal control problems
    Abbeloos, Dirk
    Diehl, Moritz
    Hinze, Michael
    Vandewalle, Stefan
    COMPUTING AND VISUALIZATION IN SCIENCE, 2011, 14 (01) : 27 - 38
  • [23] Superconvergence of semidiscrete finite element methods for bilinear parabolic optimal control problems
    Tang, Yuelong
    Hua, Yuchun
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [24] Schwarz waveform relaxation methods for parabolic equations in space-frequency domain
    Jiang, Yao-Lin
    Zhang, Hui
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (12) : 2924 - 2939
  • [25] Waveform relaxation and comparison methods for multipoint boundary value problems
    Jankowski, T
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (5-6) : 753 - 768
  • [26] On the convergence of waveform relaxation methods for linear initial value problems
    Pan, JY
    Bai, ZZ
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2004, 22 (05) : 681 - 698
  • [27] On the solution stability of parabolic optimal control problems
    Corella, Alberto Dominguez
    Jork, Nicolai
    Veliov, Vladimir M.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2023, 86 (03) : 1035 - 1079
  • [28] Optimal control of parabolic problems with state constraints
    Raymond, JP
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 655 - &
  • [29] Superconvergence analysis for parabolic optimal control problems
    Tang, Yuelong
    Hua, Yuchun
    CALCOLO, 2014, 51 (03) : 381 - 392
  • [30] Superconvergence analysis for parabolic optimal control problems
    Yuelong Tang
    Yuchun Hua
    Calcolo, 2014, 51 : 381 - 392