Peierls substitution and the Maslov operator method

被引:5
|
作者
Grushin, V. V. [1 ]
Dobrokhotov, S. Yu. [2 ]
机构
[1] Moscow Inst Phys & Technol, Moscow State Inst Elect & Math, Moscow, Russia
[2] Russian Acad Sci, Inst Problems Mech, Moscow Inst Phys & Technol, Moscow 117901, Russia
基金
俄罗斯基础研究基金会;
关键词
Peierls substitution; pseudodifferential equation; kinetic momentum; adiabatic approximation; periodic Schrodinger operator; stationary phase method; BLOCH ELECTRONS; DYNAMICS;
D O I
10.1134/S0001434610030302
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a periodic Schrodinger operator in a constant magnetic field with vector potential A(x). A version of adiabatic approximation for quantum mechanical equations with rapidly varying electric potentials and weak magnetic fields is the Peierls substitution which, in appropriate dimensionless variables, permits writing the pseudodifferential equation for the new auxiliary function: E(nu)(-i mu partial derivative chi,x)phi = E phi, where E(nu) is the corresponding energy level of some auxiliary Schrodinger operator, assumed to be nondegenerate, and mu is a small parameter. In the present paper, we use V. P. Maslov's operator method to show that, in the case of a constant magnetic field, such a reduction in any perturbation order leads to the equation E(nu)((P) over cap,mu)phi = E phi with the operator E(nu)((P) over cap,mu) represented as a function depending only on the operators of kinetic momenta (P) over cap (j) = -i mu partial derivative x(j) + Aj(x).
引用
收藏
页码:521 / 536
页数:16
相关论文
共 50 条
  • [41] Semiclassical approximation and the canonical Maslov operator for the quantum nonrelativistic equations in nanotubes
    Belov, V.V.
    Dobrokhotov, S.Y.
    Sinitsyn, S.O.
    Tudorovskij, T.Ya.
    2003, National Academy of Sciences (393)
  • [42] MASLOV INVERSE METHOD AND DECIDABLE CLASSES
    ZAMOV, NK
    ANNALS OF PURE AND APPLIED LOGIC, 1989, 42 (02) : 165 - 194
  • [43] A Maslov-Kirchhoff seismogram method
    Huang, X
    West, GF
    Kendall, JM
    GEOPHYSICAL JOURNAL INTERNATIONAL, 1998, 132 (03) : 595 - 602
  • [44] Effective Dynamics for Bloch Electrons: Peierls Substitution and Beyond
    Gianluca Panati
    Herbert Spohn
    Stefan Teufel
    Communications in Mathematical Physics, 2003, 242 : 547 - 578
  • [45] Breakdown of the Peierls substitution for the Haldane model with ultracold atoms
    Ibanez-Azpiroz, Julen
    Eiguren, Asier
    Bergara, Aitor
    Pettini, Giulio
    Modugno, Michele
    PHYSICAL REVIEW A, 2014, 90 (03):
  • [46] Peierls substitution and Hall motion in exotic Carroll dynamics
    Zeng, H.-X.
    Zhao, Q.-L.
    Zhang, P.-M.
    Horvathy, P.A.
    arXiv,
  • [47] On the representation of localized functions in a"e2 by the Maslov canonical operator
    Nazaikinskii, V. E.
    MATHEMATICAL NOTES, 2014, 96 (1-2) : 99 - 109
  • [48] Application of the Maslov Seismogram Method in Three Dimensions
    Chris H. Chapman
    Henk Keers
    Studia Geophysica et Geodaetica, 2002, 46 : 615 - 649
  • [49] Quasiclassical approximation and the Maslov canonical operator for nonrelativistic equations of quantum mechanics in nanotubes
    Belov, VV
    Dobrokhotov, SY
    Sinitsyn, SO
    Tudorovskii, TY
    DOKLADY MATHEMATICS, 2003, 68 (03) : 460 - 465
  • [50] Application of the Maslov seismogram method in three dimensions
    Chapman, CH
    Keers, H
    STUDIA GEOPHYSICA ET GEODAETICA, 2002, 46 (04) : 615 - 649