Peierls substitution and the Maslov operator method

被引:5
|
作者
Grushin, V. V. [1 ]
Dobrokhotov, S. Yu. [2 ]
机构
[1] Moscow Inst Phys & Technol, Moscow State Inst Elect & Math, Moscow, Russia
[2] Russian Acad Sci, Inst Problems Mech, Moscow Inst Phys & Technol, Moscow 117901, Russia
基金
俄罗斯基础研究基金会;
关键词
Peierls substitution; pseudodifferential equation; kinetic momentum; adiabatic approximation; periodic Schrodinger operator; stationary phase method; BLOCH ELECTRONS; DYNAMICS;
D O I
10.1134/S0001434610030302
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a periodic Schrodinger operator in a constant magnetic field with vector potential A(x). A version of adiabatic approximation for quantum mechanical equations with rapidly varying electric potentials and weak magnetic fields is the Peierls substitution which, in appropriate dimensionless variables, permits writing the pseudodifferential equation for the new auxiliary function: E(nu)(-i mu partial derivative chi,x)phi = E phi, where E(nu) is the corresponding energy level of some auxiliary Schrodinger operator, assumed to be nondegenerate, and mu is a small parameter. In the present paper, we use V. P. Maslov's operator method to show that, in the case of a constant magnetic field, such a reduction in any perturbation order leads to the equation E(nu)((P) over cap,mu)phi = E phi with the operator E(nu)((P) over cap,mu) represented as a function depending only on the operators of kinetic momenta (P) over cap (j) = -i mu partial derivative x(j) + Aj(x).
引用
收藏
页码:521 / 536
页数:16
相关论文
共 50 条
  • [31] Efficient Formulas for the Maslov Canonical Operator near a Simple Caustic
    S. Yu. Dobrokhotov
    V. E. Nazaikinskii
    Russian Journal of Mathematical Physics, 2018, 25 : 545 - 552
  • [32] Peierls substitution in the energy dispersion of a hexagonal lattice
    Oh, GY
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2000, 12 (07) : 1539 - 1543
  • [33] Efficient Formulas for the Maslov Canonical Operator near a Simple Caustic
    Dobrokhotov, S. Yu.
    Nazaikinskii, V. E.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2018, 25 (04) : 545 - 552
  • [34] New integral representations of the Maslov canonical operator in singular charts
    Dobrokhotov, S. Yu.
    Nazaikinskii, V. E.
    Shafarevich, A. I.
    IZVESTIYA MATHEMATICS, 2017, 81 (02) : 286 - 328
  • [35] Maslov's canonical operator in arbitrary coordinates on the Lagrangian manifold
    Dobrokhotov, S. Yu.
    Nazaikinskii, V. E.
    Shafarevich, A. I.
    DOKLADY MATHEMATICS, 2016, 93 (01) : 99 - 102
  • [36] ON PEIERLS METHOD OF QUANTIZATION
    FROYLAND, J
    NUOVO CIMENTO, 1965, 38 (03): : 1367 - +
  • [37] A Maslov-Kirchhoff seismogram method
    Huang, X.
    West, G. F.
    Kendall, J.-M.
    Geophysical Journal International, 132 (03):
  • [38] Peierls substitution and Hall motion in exotic Carroll dynamics
    Zeng, H. X.
    Zhao, Q. L.
    Zhang, P. M.
    Horvathy, P. A.
    PHYSICAL REVIEW D, 2025, 111 (04)
  • [39] Peierls' substitution for low lying spectral energy windows
    Cornean, Horia D.
    Helffer, Bernard
    Purice, Radu
    JOURNAL OF SPECTRAL THEORY, 2019, 9 (04) : 1179 - 1222
  • [40] Effective dynamics for Bloch electrons: Peierls substitution and beyond
    Panati, G
    Spohn, H
    Teufel, S
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 242 (03) : 547 - 578