Peierls substitution and the Maslov operator method

被引:5
|
作者
Grushin, V. V. [1 ]
Dobrokhotov, S. Yu. [2 ]
机构
[1] Moscow Inst Phys & Technol, Moscow State Inst Elect & Math, Moscow, Russia
[2] Russian Acad Sci, Inst Problems Mech, Moscow Inst Phys & Technol, Moscow 117901, Russia
基金
俄罗斯基础研究基金会;
关键词
Peierls substitution; pseudodifferential equation; kinetic momentum; adiabatic approximation; periodic Schrodinger operator; stationary phase method; BLOCH ELECTRONS; DYNAMICS;
D O I
10.1134/S0001434610030302
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a periodic Schrodinger operator in a constant magnetic field with vector potential A(x). A version of adiabatic approximation for quantum mechanical equations with rapidly varying electric potentials and weak magnetic fields is the Peierls substitution which, in appropriate dimensionless variables, permits writing the pseudodifferential equation for the new auxiliary function: E(nu)(-i mu partial derivative chi,x)phi = E phi, where E(nu) is the corresponding energy level of some auxiliary Schrodinger operator, assumed to be nondegenerate, and mu is a small parameter. In the present paper, we use V. P. Maslov's operator method to show that, in the case of a constant magnetic field, such a reduction in any perturbation order leads to the equation E(nu)((P) over cap,mu)phi = E phi with the operator E(nu)((P) over cap,mu) represented as a function depending only on the operators of kinetic momenta (P) over cap (j) = -i mu partial derivative x(j) + Aj(x).
引用
收藏
页码:521 / 536
页数:16
相关论文
共 50 条
  • [21] On the Arguments of Jacobians in Local Expressions of the Maslov Canonical Operator
    Dobrokhotov, S. Yu.
    Nazaikinskii, V. E.
    MATHEMATICAL NOTES, 2024, 116 (5-6) : 1264 - 1276
  • [22] Description of tsunami propagation based on the Maslov canonical operator
    S. Yu. Dobrokhotov
    S. Ya. Sekerzh-Zenkovich
    B. Tirozzi
    T. Ya. Tudorovskii
    Doklady Mathematics, 2006, 74 : 592 - 596
  • [23] Description of tsunami propagation based on the Maslov canonical operator
    Dobrokhotov, S. Yu.
    Sekerzh-Zenkovich, S. Ya.
    Tirozzi, B.
    Tudorovskii, T. Ya.
    DOKLADY MATHEMATICS, 2006, 74 (01) : 592 - 596
  • [24] On the representation of localized functions in ℝ2 by the Maslov canonical operator
    V. E. Nazaikinskii
    Mathematical Notes, 2014, 96 : 99 - 109
  • [25] OPERATOR SUBSTITUTION
    HAUTUS, MLJ
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 206 : 713 - 739
  • [26] AN INTRODUCTION TO MASLOV ASYMPTOTIC METHOD
    THOMSON, CJ
    CHAPMAN, CH
    GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1985, 83 (01): : 143 - 168
  • [27] THE NUMERICAL REALIZATION OF CANONICAL MASLOV OPERATOR METHOD IN PROBLEMS OF HF-WAVE PROPAGATION IN THE EARTHS IONOSPHERE
    IPATOV, EB
    LUKIN, DS
    PALKIN, EA
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOFIZIKA, 1990, 33 (05): : 562 - 572
  • [28] Maslov’s canonical operator in arbitrary coordinates on the Lagrangian manifold
    S. Yu. Dobrokhotov
    V. E. Nazaikinskii
    A. I. Shafarevich
    Doklady Mathematics, 2016, 93 : 99 - 102
  • [29] The peierls substitution and the vanishing magnetic field limit
    Ouvry, S
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2002, 16 (14-15): : 2065 - 2069
  • [30] On regularization by Maslov disturbed linear operator equation of first type
    Domanskii, EN
    DOKLADY AKADEMII NAUK, 1997, 353 (04) : 442 - 444