Peierls substitution and the Maslov operator method

被引:5
|
作者
Grushin, V. V. [1 ]
Dobrokhotov, S. Yu. [2 ]
机构
[1] Moscow Inst Phys & Technol, Moscow State Inst Elect & Math, Moscow, Russia
[2] Russian Acad Sci, Inst Problems Mech, Moscow Inst Phys & Technol, Moscow 117901, Russia
基金
俄罗斯基础研究基金会;
关键词
Peierls substitution; pseudodifferential equation; kinetic momentum; adiabatic approximation; periodic Schrodinger operator; stationary phase method; BLOCH ELECTRONS; DYNAMICS;
D O I
10.1134/S0001434610030302
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a periodic Schrodinger operator in a constant magnetic field with vector potential A(x). A version of adiabatic approximation for quantum mechanical equations with rapidly varying electric potentials and weak magnetic fields is the Peierls substitution which, in appropriate dimensionless variables, permits writing the pseudodifferential equation for the new auxiliary function: E(nu)(-i mu partial derivative chi,x)phi = E phi, where E(nu) is the corresponding energy level of some auxiliary Schrodinger operator, assumed to be nondegenerate, and mu is a small parameter. In the present paper, we use V. P. Maslov's operator method to show that, in the case of a constant magnetic field, such a reduction in any perturbation order leads to the equation E(nu)((P) over cap,mu)phi = E phi with the operator E(nu)((P) over cap,mu) represented as a function depending only on the operators of kinetic momenta (P) over cap (j) = -i mu partial derivative x(j) + Aj(x).
引用
收藏
页码:521 / 536
页数:16
相关论文
共 50 条
  • [1] Peierls substitution and the Maslov operator method
    V. V. Grushin
    S. Yu. Dobrokhotov
    Mathematical Notes, 2010, 87 : 521 - 536
  • [2] ONE GLOBAL ANALOGY OF THE MASLOV CANONICAL OPERATOR METHOD
    ULIN, VV
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA MATEMATIKA MEKHANIKA ASTRONOMIYA, 1984, (01): : 48 - 53
  • [3] ON THE APPLICATION OF MASLOV OPERATOR METHOD TO ONE PROBLEM OF DIFFRACTION
    NAZAIKINSKII, VY
    STERNIN, BY
    SHATALOV, VY
    DOKLADY AKADEMII NAUK SSSR, 1991, 317 (04): : 832 - 834
  • [4] Maslov-heaviside operator method and C0-operator duhamel integral
    V. A. Kostin
    A. V. Kostin
    D. V. Kostin
    Doklady Mathematics, 2013, 88 : 552 - 555
  • [5] Maslov-heaviside operator method and C 0-operator duhamel integral
    Kostin, V. A.
    Kostin, A. V.
    Kostin, D. V.
    DOKLADY MATHEMATICS, 2013, 88 (02) : 552 - 555
  • [6] A comment on the "Peierls substitution"
    Fung, MK
    Wang, YF
    MODERN PHYSICS LETTERS B, 2000, 14 (05): : 187 - 194
  • [7] On the Well-Posed Solvability of Fractional Operator Equations by the Maslov–Heaviside Method
    A. V. Kostin
    V. A. Kostin
    D. V. Kostin
    Mathematical Notes, 2024, 116 (5) : 1326 - 1331
  • [8] Maslov’s canonical operator in abstract spaces
    O. Yu. Shvedov
    Mathematical Notes, 1999, 65 : 365 - 380
  • [9] Maslov's canonical operator in abstract spaces
    Shvedov, OY
    MATHEMATICAL NOTES, 1999, 65 (3-4) : 365 - 380
  • [10] Representation of Bessel functions by the Maslov canonical operator
    Dobrokhotov, S. Yu
    Minenkov, D. S.
    Nazaikinskii, V. E.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2021, 208 (02) : 1018 - 1037