Li intercalation in graphite: A van der Waals density-functional study

被引:65
|
作者
Hazrati, E. [1 ]
de Wijs, G. A. [1 ]
Brocks, G. [2 ,3 ]
机构
[1] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 AJ Nijmegen, Netherlands
[2] Univ Twente, Fac Sci & Technol, NL-7500 AE Enschede, Netherlands
[3] Univ Twente, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands
关键词
GENERALIZED GRADIENT APPROXIMATION; SURFACE PHONON-DISPERSION; TOTAL-ENERGY CALCULATIONS; LITHIUM INTERCALATION; HYDROGEN STORAGE; CONSTANTS; INSERTION; ELECTRODE; GRAPHENE; LIBH4;
D O I
10.1103/PhysRevB.90.155448
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Modeling layered intercalation compounds from first principles poses a problem, as many of their properties are determined by a subtle balance between van der Waals interactions and chemical or Madelung terms, and a good description of van der Waals interactions is often lacking. Using van der Waals density functionals we study the structures, phonons and energetics of the archetype layered intercalation compound Li-graphite. Intercalation of Li in graphite leads to stable systems with calculated intercalation energies of -0.2 to -0.3 eV/Li atom, (referred to bulk graphite and Li metal). The fully loaded stage 1 and stage 2 compounds LiC6 and Li1/2C6 are stable, corresponding to two-dimensional root 3 x root 3 lattices of Li atoms intercalated between two graphene planes. Stage N > 2 structures are unstable compared to dilute stage 2 compounds with the same concentration. At elevated temperatures dilute stage 2 compounds easily become disordered, but the structure of Li3/16C6 is relatively stable, corresponding to a root 7 x root 7 in-plane packing of Li atoms. First- principles calculations, along with a Bethe-Peierls model of finite temperature effects, allow for a microscopic description of the observed voltage profiles.
引用
收藏
页数:11
相关论文
共 50 条
  • [42] Density functional for van der Waals forces at surfaces
    Hult, E
    Andersson, Y
    Lundqvist, BI
    Langreth, DC
    PHYSICAL REVIEW LETTERS, 1996, 77 (10) : 2029 - 2032
  • [43] van der Waals density functional made accurate
    Hamada, Ikutaro
    PHYSICAL REVIEW B, 2014, 89 (12):
  • [44] Density-functional study of van der Waals forces on rare-gas diatomics:: Hartree-Fock exchange
    Pérez-Jordá, JM
    San-Fabián, E
    Pérez-Jiménez, AJ
    JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (04): : 1916 - 1920
  • [45] Application of van der Waals density functional to an extended system:: Adsorption of benzene and naphthalene on graphite
    Chakarova-Käck, SD
    Schröder, E
    Lundqvist, BI
    Langreth, DC
    PHYSICAL REVIEW LETTERS, 2006, 96 (14)
  • [46] Band gap modulation of bilayer graphene by single and dual molecular doping: A van der Waals density-functional study
    Hu, Tao
    Gerber, Iann C.
    CHEMICAL PHYSICS LETTERS, 2014, 616 : 75 - 80
  • [47] Van der Waals density functional: Self-consistent potential and the nature of the van der Waals bond
    Thonhauser, T.
    Cooper, Valentino R.
    Li, Shen
    Puzder, Aaron
    Hyldgaard, Per
    Langreth, David C.
    PHYSICAL REVIEW B, 2007, 76 (12)
  • [48] A density functional theory study of van der Waals interaction in carbon nanotubes
    Wang, Houng-Wei
    Hayashi, Michitoshi
    JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2023, 70 (03) : 759 - 769
  • [49] A van der Waals density functional study of chloroform and other trihalomethanes on graphene
    Akesson, Joel
    Sundborg, Oskar
    Wahlstrom, Olof
    Schroder, Elsebeth
    JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (17):
  • [50] Possible New Graphite Intercalation Compounds for Superconductors and Charge Density Wave Materials: Systematic Simulations with Various Intercalants Using a van der Waals Density Functional Method
    Kawaguchi, Naoto
    Shibata, Kiyou
    Mizoguchi, Teruyasu
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (20): : 9833 - 9843