Li intercalation in graphite: A van der Waals density-functional study

被引:65
|
作者
Hazrati, E. [1 ]
de Wijs, G. A. [1 ]
Brocks, G. [2 ,3 ]
机构
[1] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 AJ Nijmegen, Netherlands
[2] Univ Twente, Fac Sci & Technol, NL-7500 AE Enschede, Netherlands
[3] Univ Twente, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands
关键词
GENERALIZED GRADIENT APPROXIMATION; SURFACE PHONON-DISPERSION; TOTAL-ENERGY CALCULATIONS; LITHIUM INTERCALATION; HYDROGEN STORAGE; CONSTANTS; INSERTION; ELECTRODE; GRAPHENE; LIBH4;
D O I
10.1103/PhysRevB.90.155448
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Modeling layered intercalation compounds from first principles poses a problem, as many of their properties are determined by a subtle balance between van der Waals interactions and chemical or Madelung terms, and a good description of van der Waals interactions is often lacking. Using van der Waals density functionals we study the structures, phonons and energetics of the archetype layered intercalation compound Li-graphite. Intercalation of Li in graphite leads to stable systems with calculated intercalation energies of -0.2 to -0.3 eV/Li atom, (referred to bulk graphite and Li metal). The fully loaded stage 1 and stage 2 compounds LiC6 and Li1/2C6 are stable, corresponding to two-dimensional root 3 x root 3 lattices of Li atoms intercalated between two graphene planes. Stage N > 2 structures are unstable compared to dilute stage 2 compounds with the same concentration. At elevated temperatures dilute stage 2 compounds easily become disordered, but the structure of Li3/16C6 is relatively stable, corresponding to a root 7 x root 7 in-plane packing of Li atoms. First- principles calculations, along with a Bethe-Peierls model of finite temperature effects, allow for a microscopic description of the observed voltage profiles.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] van der Waals bonds in density-functional theory -: art. no. 032502
    Engel, E
    Höck, A
    Dreizler, RM
    PHYSICAL REVIEW A, 2000, 61 (03): : 5
  • [22] FDE-vdW: A van der Waals inclusive subsystem density-functional theory
    Kevorkyants, Ruslan
    Eshuis, Henk
    Pavanello, Michele
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (04):
  • [23] Graphene on metals: A van der Waals density functional study
    Vanin, M.
    Mortensen, J. J.
    Kelkkanen, A. K.
    Garcia-Lastra, J. M.
    Thygesen, K. S.
    Jacobsen, K. W.
    PHYSICAL REVIEW B, 2010, 81 (08):
  • [24] A van der Waals density functional study of ice Ih
    Hamada, Ikutaro
    JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (21):
  • [25] van der Waals density functional for solids
    Bjorkman, Torbjorn
    PHYSICAL REVIEW B, 2012, 86 (16)
  • [26] Prospects for a van der Waals density functional
    Dobson, JF
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1998, 69 (04) : 615 - 618
  • [27] Adsorption of TCDD molecule onto CNTs and BNNTs: Ab initio van der Waals density-functional study
    Ganji, M. Darvish
    Alinezhad, H.
    Soleymani, E.
    Tajbakhsh, M.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2015, 67 : 105 - 111
  • [28] Thermodynamics of graphite intercalation binary alloys of Li-Na, Na-K, and Li-K from van der Waals density functionals
    Song, Tao
    Xie, Yaoping
    Chen, Yigang
    Guo, Haibo
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2019, 23 (10) : 2825 - 2834
  • [29] Thermodynamics of graphite intercalation binary alloys of Li-Na, Na-K, and Li-K from van der Waals density functionals
    Tao Song
    Yaoping Xie
    Yigang Chen
    Haibo Guo
    Journal of Solid State Electrochemistry, 2019, 23 : 2825 - 2834
  • [30] DENSITY-FUNCTIONAL TREATMENT OF WATER CARBON-DIOXIDE VAN-DER-WAALS COMPLEX
    ABASHKIN, Y
    MELE, F
    RUSSO, N
    TOSCANO, M
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1994, 52 (04) : 1011 - 1015