Li intercalation in graphite: A van der Waals density-functional study

被引:65
|
作者
Hazrati, E. [1 ]
de Wijs, G. A. [1 ]
Brocks, G. [2 ,3 ]
机构
[1] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 AJ Nijmegen, Netherlands
[2] Univ Twente, Fac Sci & Technol, NL-7500 AE Enschede, Netherlands
[3] Univ Twente, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands
关键词
GENERALIZED GRADIENT APPROXIMATION; SURFACE PHONON-DISPERSION; TOTAL-ENERGY CALCULATIONS; LITHIUM INTERCALATION; HYDROGEN STORAGE; CONSTANTS; INSERTION; ELECTRODE; GRAPHENE; LIBH4;
D O I
10.1103/PhysRevB.90.155448
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Modeling layered intercalation compounds from first principles poses a problem, as many of their properties are determined by a subtle balance between van der Waals interactions and chemical or Madelung terms, and a good description of van der Waals interactions is often lacking. Using van der Waals density functionals we study the structures, phonons and energetics of the archetype layered intercalation compound Li-graphite. Intercalation of Li in graphite leads to stable systems with calculated intercalation energies of -0.2 to -0.3 eV/Li atom, (referred to bulk graphite and Li metal). The fully loaded stage 1 and stage 2 compounds LiC6 and Li1/2C6 are stable, corresponding to two-dimensional root 3 x root 3 lattices of Li atoms intercalated between two graphene planes. Stage N > 2 structures are unstable compared to dilute stage 2 compounds with the same concentration. At elevated temperatures dilute stage 2 compounds easily become disordered, but the structure of Li3/16C6 is relatively stable, corresponding to a root 7 x root 7 in-plane packing of Li atoms. First- principles calculations, along with a Bethe-Peierls model of finite temperature effects, allow for a microscopic description of the observed voltage profiles.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Density-functional calculation of van der Waals forces for free-electron-like surfaces
    Hult, E
    Hyldgaard, P
    Rossmeisl, J
    Lundqvist, BI
    PHYSICAL REVIEW B, 2001, 64 (19):
  • [32] Van Der Waals Density Functionals for Graphene Layers and Graphite
    Birowska, M.
    Milowska, K.
    Majewski, J. A.
    ACTA PHYSICA POLONICA A, 2011, 120 (05) : 845 - 848
  • [33] Li-decorated Pmmn8 phase of borophene for hydrogen storage. A van der Waals corrected density-functional theory study
    Lebon, A.
    Aguilera-del-Toro, R. H.
    Gallego, L. J.
    Vega, A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (02) : 1021 - 1033
  • [34] Adsorption of water on graphene: A van der Waals density functional study
    Hamada, Ikutaro
    PHYSICAL REVIEW B, 2012, 86 (19)
  • [35] Van der Waals density functional: An appropriate exchange functional
    Cooper, Valentino R.
    PHYSICAL REVIEW B, 2010, 81 (16):
  • [36] Van der Waals density functional theory with applications
    Langreth, DC
    Dion, M
    Rydberg, H
    Schröder, E
    Hyldgaard, P
    Lundqvist, BI
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2005, 101 (05) : 599 - 610
  • [37] Chemical accuracy for the van der Waals density functional
    Klimes, Jiri
    Bowler, David R.
    Michaelides, Angelos
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (02)
  • [38] Van der waals interactions in density functional theory
    Andersson, Y
    Hult, E
    Rydberg, H
    Apell, P
    Lundqvist, BI
    Langreth, DC
    ELECTRONIC DENSITY FUNCTIONAL THEORY: RECENT PROGRESS AND NEW DIRECTIONS, 1998, : 243 - 260
  • [39] Band gap modulation of bilayer graphene by single and dual molecular doping: A van der Waals density-functional study
    Hu, Tao
    Gerber, Iann C.
    Chemical Physics Letters, 2014, 616-617 : 75 - 80
  • [40] Van der waals interactions in density functional theory
    Hult, Erika
    Doktorsavhandlingar vid Chalmers Tekniska Hogskola, 1999, (1501): : 1 - 68