GDL-FIRE4D: Deep Learning-Based Fast 4D CT Image Registration

被引:35
|
作者
Sentker, Thilo [1 ,2 ]
Madesta, Frederic [1 ,2 ]
Werner, Rene [1 ]
机构
[1] Univ Med Ctr Hamburg Eppendorf, Dept Computat Neurosci, Martinistr 52, D-20246 Hamburg, Germany
[2] Univ Med Ctr Hamburg Eppendorf, Dept Radiotherapy & Radiat Oncol, Martinistr 52, D-20246 Hamburg, Germany
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT I | 2018年 / 11070卷
关键词
Non-linear image registration; Registration uncertainty; 4D CT; Deep learning;
D O I
10.1007/978-3-030-00928-1_86
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Deformable image registration (DIR) in thoracic 4D CT image data is integral for, e.g., radiotherapy treatment planning, but time consuming. Deep learning (DL)-based DIR promises speed-up, but present solutions are limited to small image sizes. In this paper, we propose a General Deep Learning-based Fast Image Registration framework suitable for application to clinical 4D CT data (GDL-FIRE4D). Open source DIR frameworks are selected to build GDL-FIRE4D variants. In-house-acquired 4D CT images serve as training and open(4D) CT data repositories as external evaluation cohorts. Taking up current attempts to DIR uncertainty estimation, dropout-based uncertainty maps for GDL-FIRE4D variants are analyzed. We show that (1) registration accuracy of GDL-FIRE4D and standard DIR are in the same order; (2) computation time is reduced to a few seconds (here: 60-fold speed-up); and (3) dropout-based uncertainty maps do not correlate to across-DIR vector field differences, raising doubts about applicability in the given context.
引用
收藏
页码:765 / 773
页数:9
相关论文
共 50 条
  • [31] Lung 4D CT Image Registration Based on High-Order Markov Random Field
    Xue, Peng
    Dong, Enqing
    Ji, Huizhong
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (04) : 910 - 921
  • [32] Tensor grid based image registration with application to ventilation estimation on 4D CT lung data
    Heike Ruppertshofen
    Sven Kabus
    Bernd Fischer
    International Journal of Computer Assisted Radiology and Surgery, 2010, 5 : 583 - 593
  • [33] Sub- second speed 4D-CT image registration using deep learning
    Van der Meulen, T.
    Pastor-Serrano, O.
    Habraken, S.
    Perko, Z.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S548 - S549
  • [34] 4D CT Deformable Registration Using Unsupervised Deep Learning for Lung Stereotactic Body Radiation Therapy
    Yang, X.
    Fu, Y.
    Lei, Y.
    Tian, Z.
    Wang, T.
    Higgins, K. A.
    Shelton, J. W.
    Bradley, J. D.
    Curran, W. J., Jr.
    Liu, T.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : E342 - E343
  • [35] Motion Extraction of the Right Ventricle from 4D Cardiac Cine MRI Using A Deep Learning-Based Deformable Registration Framework
    Upendra, Roshan Reddy
    Hasan, S. M. Kamrul
    Simon, Richard
    Wentz, Brian Jamison
    Shontz, Suzanne M.
    Sacks, Michael S.
    Linte, Cristian A.
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3795 - 3799
  • [36] ENHANCED 4D PET OPTIMIZATION BASED ON 4D CT MOTION MODELING
    Gianoli, C.
    Fontana, G.
    Riboldi, M.
    Cavedon, C.
    Baroni, G.
    RADIOTHERAPY AND ONCOLOGY, 2011, 99 : S67 - S68
  • [37] Deep learning-based 3D brain multimodal medical image registration
    Liwei Deng
    Qi Lan
    Qiang Zhi
    Sijuan Huang
    Jing Wang
    Xin Yang
    Medical & Biological Engineering & Computing, 2024, 62 : 505 - 519
  • [38] Automatic contour generation of 4D CT by deformable registration
    Duan, Zhuolei
    Zhou, Fugen
    Liu, Bo
    Deng, Xiaowu
    Chen, Ming
    Huang, Xiaoyan
    PACIIA: 2008 PACIFIC-ASIA WORKSHOP ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION, VOLS 1-3, PROCEEDINGS, 2008, : 1170 - +
  • [39] SEGMENTATION OF 4D CT BONE IMAGES BY SEQUENTIAL REGISTRATION
    Van Dijck, Christophe
    Kerkhof, Faes
    Vereecke, Evie
    Wirix-Speetjens, Roel
    Vander Sloten, Jos
    2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), 2015, : 621 - 624
  • [40] Dependence of ventilation image derived from 4D CT on deformable image registration and ventilation algorithms
    Latifi, Kujtim
    Forster, Kenneth M.
    Hoffe, Sarah E.
    Dilling, Thomas J.
    van Elmpt, Wouter
    Dekker, Andre
    Zhang, Geoffrey G.
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2013, 14 (04): : 150 - 162