GDL-FIRE4D: Deep Learning-Based Fast 4D CT Image Registration

被引:35
|
作者
Sentker, Thilo [1 ,2 ]
Madesta, Frederic [1 ,2 ]
Werner, Rene [1 ]
机构
[1] Univ Med Ctr Hamburg Eppendorf, Dept Computat Neurosci, Martinistr 52, D-20246 Hamburg, Germany
[2] Univ Med Ctr Hamburg Eppendorf, Dept Radiotherapy & Radiat Oncol, Martinistr 52, D-20246 Hamburg, Germany
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT I | 2018年 / 11070卷
关键词
Non-linear image registration; Registration uncertainty; 4D CT; Deep learning;
D O I
10.1007/978-3-030-00928-1_86
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Deformable image registration (DIR) in thoracic 4D CT image data is integral for, e.g., radiotherapy treatment planning, but time consuming. Deep learning (DL)-based DIR promises speed-up, but present solutions are limited to small image sizes. In this paper, we propose a General Deep Learning-based Fast Image Registration framework suitable for application to clinical 4D CT data (GDL-FIRE4D). Open source DIR frameworks are selected to build GDL-FIRE4D variants. In-house-acquired 4D CT images serve as training and open(4D) CT data repositories as external evaluation cohorts. Taking up current attempts to DIR uncertainty estimation, dropout-based uncertainty maps for GDL-FIRE4D variants are analyzed. We show that (1) registration accuracy of GDL-FIRE4D and standard DIR are in the same order; (2) computation time is reduced to a few seconds (here: 60-fold speed-up); and (3) dropout-based uncertainty maps do not correlate to across-DIR vector field differences, raising doubts about applicability in the given context.
引用
收藏
页码:765 / 773
页数:9
相关论文
共 50 条
  • [21] Image Registration with Sliding Motion Constraints for 4D CT Motion Correction
    Derksen, Alexander
    Heldmann, Stefan
    Polzin, Thomas
    Berkels, Benjamin
    BILDVERARBEITUNG FUR DIE MEDIZIN 2015: ALGORITHMEN - SYSTEME - ANWENDUNGEN, 2015, : 335 - 340
  • [22] Phase Correlated Image Registration to 4D CT for Liver Stereotactic Radiosurgery with Image Guidance CT
    Juh, R.
    Suh, T.
    MEDICAL PHYSICS, 2010, 37 (06)
  • [23] Fast motion-compensated reconstruction for 4D-CBCT using deep learning-based groupwise registration
    Zhang, Zhehao
    Hao, Yao
    Jin, Xiyao
    Yang, Deshan
    Kamilov, Ulugbek S.
    Hugo, Geoffrey D.
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2025, 11 (01):
  • [24] Evaluation of Liver Deformation During Breathing Using Deformable Image Registration: A Comparison Between 4D CT and 4D MRI
    Liang, X.
    Czito, B.
    Palta, M.
    Bashir, M.
    Yin, F.
    Cai, J.
    MEDICAL PHYSICS, 2014, 41 (06) : 171 - 171
  • [25] Deep Learning-Based Simultaneous Multi-Phase Deformable Image Registration of Sparse 4D-CBCT
    Herzig, I.
    Paysan, P.
    Scheib, S.
    Schilling, F-P
    Montoya, J.
    Amirian, M.
    Stadelmann, T.
    Eggenberger, P.
    Fuechslin, R.
    Lichtensteiger, L.
    MEDICAL PHYSICS, 2022, 49 (06) : E325 - E326
  • [26] LOCAL MOTION ANALYSIS IN 4D LUNG CT USING FAST GROUPWISE REGISTRATION
    Bystrov, D.
    Vik, T.
    Schulz, H.
    Klinder, T.
    Schmidt, S.
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 1749 - +
  • [27] Deep learning-based internal gross target volume definition in 4D CT images of lung cancer patients
    Ma, Yuanyuan
    Mao, Jingfang
    Liu, Xinguo
    Dai, Zhongying
    Zhang, Hui
    Zhang, Xinyang
    Li, Qiang
    MEDICAL PHYSICS, 2023, 50 (04) : 2303 - 2316
  • [28] Fast Groupwise 4D Deformable Image Registration for Irregular Breathing Motion Estimation
    Papiez, Bartlomiej W.
    McGowan, Daniel R.
    Skwarski, Michael
    Higgins, Geoff S.
    Schnabel, Julia A.
    Brady, Sir Michael
    BIOMEDICAL IMAGE REGISTRATION, WBIR 2018, 2018, 10883 : 37 - 46
  • [29] A New Deformable Image Registration Method Based on B-Spline for Clinical 4D CT
    Wang, Hui
    Yin, Yong
    Wang, Hongjun
    Li, Dengwang
    MECHANICAL ENGINEERING AND INTELLIGENT SYSTEMS, PTS 1 AND 2, 2012, 195-196 : 566 - 571
  • [30] Tensor grid based image registration with application to ventilation estimation on 4D CT lung data
    Ruppertshofen, Heike
    Kabus, Sven
    Fischer, Bernd
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2010, 5 (06) : 583 - 593