GDL-FIRE4D: Deep Learning-Based Fast 4D CT Image Registration

被引:35
|
作者
Sentker, Thilo [1 ,2 ]
Madesta, Frederic [1 ,2 ]
Werner, Rene [1 ]
机构
[1] Univ Med Ctr Hamburg Eppendorf, Dept Computat Neurosci, Martinistr 52, D-20246 Hamburg, Germany
[2] Univ Med Ctr Hamburg Eppendorf, Dept Radiotherapy & Radiat Oncol, Martinistr 52, D-20246 Hamburg, Germany
关键词
Non-linear image registration; Registration uncertainty; 4D CT; Deep learning;
D O I
10.1007/978-3-030-00928-1_86
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Deformable image registration (DIR) in thoracic 4D CT image data is integral for, e.g., radiotherapy treatment planning, but time consuming. Deep learning (DL)-based DIR promises speed-up, but present solutions are limited to small image sizes. In this paper, we propose a General Deep Learning-based Fast Image Registration framework suitable for application to clinical 4D CT data (GDL-FIRE4D). Open source DIR frameworks are selected to build GDL-FIRE4D variants. In-house-acquired 4D CT images serve as training and open(4D) CT data repositories as external evaluation cohorts. Taking up current attempts to DIR uncertainty estimation, dropout-based uncertainty maps for GDL-FIRE4D variants are analyzed. We show that (1) registration accuracy of GDL-FIRE4D and standard DIR are in the same order; (2) computation time is reduced to a few seconds (here: 60-fold speed-up); and (3) dropout-based uncertainty maps do not correlate to across-DIR vector field differences, raising doubts about applicability in the given context.
引用
收藏
页码:765 / 773
页数:9
相关论文
共 50 条
  • [1] Deep learning-based 4D synthetic CT for lung radiotherapy
    Maspero, M.
    Keijnemans, K.
    Hackett, S. L.
    Raaymakers, B. W.
    Verhoeff, J. J. C.
    Fast, M. F.
    van den Berg, C. A. T.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S689 - S690
  • [2] GroupRegNet: a groupwise one-shot deep learning-based 4D image registration method
    Zhang, Yunlu
    Wu, Xue
    Gach, H. Michael
    Li, Harold
    Yang, Deshan
    PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (04):
  • [3] Image segmentation in 4D CT based on a deformable image registration model
    Xing, L
    Schreibmann, E
    Yang, Y
    Boyer, A
    Li, T
    MEDICAL PHYSICS, 2005, 32 (06) : 2095 - 2095
  • [4] Lung Respiratory Motion Estimation Based on Fast Kalman Filtering and 4D CT Image Registration
    Xue, Peng
    Fu, Yu
    Ji, Huizhong
    Cui, Wentao
    Dong, Enqing
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (06) : 2007 - 2017
  • [5] ADVANCES IN DEFORMABLE IMAGE REGISTRATION OF THORACIC 4D CT
    Sarrut, D.
    Vandemeulebroucke, J.
    Rit, S.
    RADIOTHERAPY AND ONCOLOGY, 2010, 96 : S188 - S189
  • [6] Registration of 4D CBCT and 4D CT for extracranial stereotactic treatments
    Elder, E.
    Schreibmann, E.
    Li, T.
    Fox, T.
    Xing, L.
    Crocker, J.
    Landry, J.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2006, 66 (03): : S651 - S651
  • [7] Transfer-learning is a key ingredient to fast deep learning-based 4D liver MRI reconstruction
    Gino Gulamhussene
    Marko Rak
    Oleksii Bashkanov
    Fabian Joeres
    Jazan Omari
    Maciej Pech
    Christian Hansen
    Scientific Reports, 13
  • [8] Transfer-learning is a key ingredient to fast deep learning-based 4D liver MRI reconstruction
    Gulamhussene, Gino
    Rak, Marko
    Bashkanov, Oleksii
    Joeres, Fabian
    Omari, Jazan
    Pech, Maciej
    Hansen, Christian
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [9] Deep learning-based conditional inpainting for restoration of artifact-affected 4D CT images
    Madesta, Frederic
    Sentker, Thilo
    Gauer, Tobias
    Werner, Rene
    MEDICAL PHYSICS, 2024, 51 (05) : 3437 - 3454
  • [10] Effective lung ventilation estimation based on 4D CT image registration and supervoxels
    Xue, Peng
    Fu, Yu
    Zhang, Jingyang
    Ma, Lei
    Ren, Meirong
    Zhang, Zhili
    Dong, Enqing
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 79