Approximations for Pareto and Proper Pareto solutions and their KKT conditions

被引:3
|
作者
Kesarwani, P. [1 ]
Shukla, P. K. [2 ,3 ]
Dutta, J. [4 ]
Deb, K. [5 ]
机构
[1] Indian Inst Technol, Dept Math & Stat, Kanpur, Uttar Pradesh, India
[2] Alliance Manchester Business Sch, Manchester, Lancs, England
[3] Karlsruhe Inst Technol, Inst AIFB, Karlsruhe, Germany
[4] Indian Inst Technol, Dept Econ Sci, Kanpur, Uttar Pradesh, India
[5] Michigan State Univ, Coll Engn, E Lansing, MI 48824 USA
关键词
Convex functions; Locally Lipschitz functions; Multi objective optimisation; Pareto minimum; Proper Pareto minimum; Saddle point; MULTIOBJECTIVE OPTIMIZATION; POINTS;
D O I
10.1007/s00186-022-00787-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this article, we view the Pareto and weak Pareto solutions of the multiobjective optimization by using an approximate version of KKT type conditions. In one of our main results Ekeland's variational principle for vector-valued maps plays a key role. We also focus on an improved version of Geoffrion proper Pareto solutions and it's approximation and characterize them through saddle point and KKT type conditions.
引用
收藏
页码:123 / 148
页数:26
相关论文
共 50 条
  • [41] A scalar optimization approach for averaged Hausdorff approximations of the Pareto front
    Schutze, Oliver
    Dominguez-Medina, Christian
    Cruz-Cortes, Nareli
    Gerardo de la Fraga, Luis
    Sun, Jian-Qiao
    Toscano, Gregorio
    Landa, Ricardo
    ENGINEERING OPTIMIZATION, 2016, 48 (09) : 1593 - 1617
  • [42] On cone characterizations of weak, proper and Pareto optimality in multiobjective optimization
    Kaisa Miettinen
    Marko M. Mäkelä
    Mathematical Methods of Operations Research, 2001, 53 : 233 - 245
  • [43] On cone characterizations of weak, proper and Pareto optimality in multiobjective optimization
    Miettinen, K
    Mäkelä, MM
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2001, 53 (02) : 233 - 245
  • [44] Visualization of Pareto optimal solutions using MIGSOM
    Suzuki, Naoto
    Okamoto, Takashi
    Koakutsu, Seiichi
    2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2015, : 2556 - 2564
  • [45] Finding preferred subsets of Pareto optimal solutions
    Gio K. Kao
    Sheldon H. Jacobson
    Computational Optimization and Applications, 2008, 40 : 73 - 95
  • [46] Pareto Suboptimal Solutions under Coalitions of Disturbances
    Balandin, Dmitry V.
    Kogan, Mark M.
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE STABILITY AND OSCILLATIONS OF NONLINEAR CONTROL SYSTEMS (PYATNITSKIY'S CONFERENCE), 2016,
  • [47] Finding preferred subsets of Pareto optimal solutions
    Kao, Gio K.
    Jacobson, Sheldon H.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2008, 40 (01) : 73 - 95
  • [48] Pareto solutions in multicriteria optimization under uncertainty
    Engau, Alexander
    Sigler, Devon
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2020, 281 (02) : 357 - 368
  • [49] PROBING THE PARETO FRONTIER FOR BASIS PURSUIT SOLUTIONS
    van den Berg, Ewout
    Friedlander, Michael P.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 31 (02): : 890 - 912
  • [50] APPROXIMATION OF A SET OF PARETO-OPTIMAL SOLUTIONS
    NEFEDOV, VN
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1986, 26 (01): : 99 - 107