Approximations for Pareto and Proper Pareto solutions and their KKT conditions

被引:3
|
作者
Kesarwani, P. [1 ]
Shukla, P. K. [2 ,3 ]
Dutta, J. [4 ]
Deb, K. [5 ]
机构
[1] Indian Inst Technol, Dept Math & Stat, Kanpur, Uttar Pradesh, India
[2] Alliance Manchester Business Sch, Manchester, Lancs, England
[3] Karlsruhe Inst Technol, Inst AIFB, Karlsruhe, Germany
[4] Indian Inst Technol, Dept Econ Sci, Kanpur, Uttar Pradesh, India
[5] Michigan State Univ, Coll Engn, E Lansing, MI 48824 USA
关键词
Convex functions; Locally Lipschitz functions; Multi objective optimisation; Pareto minimum; Proper Pareto minimum; Saddle point; MULTIOBJECTIVE OPTIMIZATION; POINTS;
D O I
10.1007/s00186-022-00787-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this article, we view the Pareto and weak Pareto solutions of the multiobjective optimization by using an approximate version of KKT type conditions. In one of our main results Ekeland's variational principle for vector-valued maps plays a key role. We also focus on an improved version of Geoffrion proper Pareto solutions and it's approximation and characterize them through saddle point and KKT type conditions.
引用
收藏
页码:123 / 148
页数:26
相关论文
共 50 条
  • [31] On Pareto Local Optimal Solutions Networks
    Liefooghe, Arnaud
    Derbel, Bilel
    Verel, Sebastien
    Lopez-Ibanez, Manuel
    Aguirre, Hernan
    Tanaka, Kiyoshi
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XV, PT II, 2018, 11102 : 232 - 244
  • [32] A systematic search for Pareto optimum solutions
    Pietrzak, J
    STRUCTURAL OPTIMIZATION, 1999, 17 (01): : 79 - 81
  • [33] PARETO OPTIMALITY IN THE WORK OF PARETO
    Mornati, Fiorenzo
    REVUE EUROPEENNE DES SCIENCES SOCIALES, 2013, 51 (02): : 65 - 82
  • [34] A systematic search for Pareto optimum solutions
    Pietrzak J.
    Structural optimization, 1999, 17 (1) : 79 - 81
  • [35] NECESSARY CONDITIONS FOR LOCAL PARETO MINIMUM
    CALIGARIS, O
    OLIVA, P
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1986, 5B (03): : 721 - 750
  • [37] SUFFICIENT OPTIMALITY CONDITIONS FOR GLOBAL PARETO SOLUTIONS TO MULTIOBJECTIVE PROBLEMS WITH EQUILIBRIUM CONSTRAINTS
    Bao, Truong Q.
    Mordukhovich, Boris S.
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2014, 15 (01) : 105 - 127
  • [38] TOWARD THE USE OF PARETO PERFORMANCE SOLUTIONS AND PARETO ROBUSTNESS SOLUTIONS FOR MULTI-OBJECTIVE ROBUST OPTIMIZATION PROBLEMS
    Wang, Weijun
    Caro, Stephane
    Bennis, Fouad
    Augusto, Oscar Brito
    PROCEEDINGS OF THE ASME 11TH BIENNIAL CONFERENCE ON ENGINEERING SYSTEMS DESIGN AND ANALYSIS, 2012, VOL 3, 2012, : 541 - 550
  • [39] Characterizing Pareto Front Approximations in Many-objective Optimization
    Asafuddoula, Md
    Ray, Tapabrata
    Singh, Hemant Kumar
    GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 607 - 614
  • [40] Analysis of the transferability and robustness of GANs evolved for Pareto set approximations
    Garciarena, Unai
    Mendiburu, Alexander
    Santana, Roberto
    NEURAL NETWORKS, 2020, 132 : 281 - 296