Approximations for Pareto and Proper Pareto solutions and their KKT conditions

被引:3
|
作者
Kesarwani, P. [1 ]
Shukla, P. K. [2 ,3 ]
Dutta, J. [4 ]
Deb, K. [5 ]
机构
[1] Indian Inst Technol, Dept Math & Stat, Kanpur, Uttar Pradesh, India
[2] Alliance Manchester Business Sch, Manchester, Lancs, England
[3] Karlsruhe Inst Technol, Inst AIFB, Karlsruhe, Germany
[4] Indian Inst Technol, Dept Econ Sci, Kanpur, Uttar Pradesh, India
[5] Michigan State Univ, Coll Engn, E Lansing, MI 48824 USA
关键词
Convex functions; Locally Lipschitz functions; Multi objective optimisation; Pareto minimum; Proper Pareto minimum; Saddle point; MULTIOBJECTIVE OPTIMIZATION; POINTS;
D O I
10.1007/s00186-022-00787-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this article, we view the Pareto and weak Pareto solutions of the multiobjective optimization by using an approximate version of KKT type conditions. In one of our main results Ekeland's variational principle for vector-valued maps plays a key role. We also focus on an improved version of Geoffrion proper Pareto solutions and it's approximation and characterize them through saddle point and KKT type conditions.
引用
收藏
页码:123 / 148
页数:26
相关论文
共 50 条
  • [21] On The Use of Hypervolume for Diversity Measurement of Pareto Front Approximations
    Jiang, Shouyong
    Yang, Shengxiang
    Li, Miqing
    PROCEEDINGS OF 2016 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2016,
  • [22] Efficient Pareto Frontier Exploration using Surrogate Approximations
    Wilson, Benjamin
    Cappelleri, David
    Simpson, Timothy W.
    Frecker, Mary
    OPTIMIZATION AND ENGINEERING, 2001, 2 (01) : 31 - 50
  • [23] Efficient Pareto Frontier Exploration using Surrogate Approximations
    Benjamin Wilson
    David Cappelleri
    Timothy W. Simpson
    Mary Frecker
    Optimization and Engineering, 2001, 2 : 31 - 50
  • [24] MULTIPLE-OBJECTIVE PROBLEMS - PARETO-OPTIMAL SOLUTIONS BY METHOD OF PROPER EQUALITY CONSTRAINTS
    LIN, JG
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (05) : 641 - 650
  • [25] In search of proper Pareto-optimal solutions using multi-objective evolutionary algorithms
    Shukla, Pradyumn Kumar
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 4, PROCEEDINGS, 2007, 4490 : 1013 - 1020
  • [26] Sensitivity of Pareto Solutions in Multiobjective Optimization
    A. Balbás
    E. Galperin
    P. Jiménez. Guerra
    Journal of Optimization Theory and Applications, 2005, 126 : 247 - 264
  • [27] Sensitivity of Pareto solutions in multiobjective optimization
    Balbás, A
    Galperin, E
    Guerra, PJ
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2005, 126 (02) : 247 - 264
  • [28] Graphical illustration of Pareto optimal solutions
    Miettinen, K
    MULTI-OBJECTIVE PROGRAMMING AND GOAL PROGRAMMING, 2003, : 197 - 202
  • [29] Pareto Optimal Solutions for Smoothed Analysts
    Moitra, Ankur
    O'Donnell, Ryan
    STOC 11: PROCEEDINGS OF THE 43RD ACM SYMPOSIUM ON THEORY OF COMPUTING, 2011, : 225 - 234
  • [30] PARETO OPTIMAL SOLUTIONS FOR SMOOTHED ANALYSTS
    Moitra, Ankur
    O'Donnell, Ryan
    SIAM JOURNAL ON COMPUTING, 2012, 41 (05) : 1266 - 1284