Approximations for Pareto and Proper Pareto solutions and their KKT conditions

被引:3
|
作者
Kesarwani, P. [1 ]
Shukla, P. K. [2 ,3 ]
Dutta, J. [4 ]
Deb, K. [5 ]
机构
[1] Indian Inst Technol, Dept Math & Stat, Kanpur, Uttar Pradesh, India
[2] Alliance Manchester Business Sch, Manchester, Lancs, England
[3] Karlsruhe Inst Technol, Inst AIFB, Karlsruhe, Germany
[4] Indian Inst Technol, Dept Econ Sci, Kanpur, Uttar Pradesh, India
[5] Michigan State Univ, Coll Engn, E Lansing, MI 48824 USA
关键词
Convex functions; Locally Lipschitz functions; Multi objective optimisation; Pareto minimum; Proper Pareto minimum; Saddle point; MULTIOBJECTIVE OPTIMIZATION; POINTS;
D O I
10.1007/s00186-022-00787-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this article, we view the Pareto and weak Pareto solutions of the multiobjective optimization by using an approximate version of KKT type conditions. In one of our main results Ekeland's variational principle for vector-valued maps plays a key role. We also focus on an improved version of Geoffrion proper Pareto solutions and it's approximation and characterize them through saddle point and KKT type conditions.
引用
收藏
页码:123 / 148
页数:26
相关论文
共 50 条
  • [1] Approximations for Pareto and Proper Pareto solutions and their KKT conditions
    P. Kesarwani
    P. K. Shukla
    J. Dutta
    K. Deb
    Mathematical Methods of Operations Research, 2022, 96 : 123 - 148
  • [2] On upper approximations of Pareto fronts
    I. Kaliszewski
    J. Miroforidis
    Journal of Global Optimization, 2018, 72 : 475 - 490
  • [3] On upper approximations of Pareto fronts
    Kaliszewski, I.
    Miroforidis, J.
    JOURNAL OF GLOBAL OPTIMIZATION, 2018, 72 (03) : 475 - 490
  • [4] Quality Assessment of Pareto Set Approximations
    Zitzler, Eckart
    Knowles, Joshua
    Thiele, Lothar
    MULTIOBJECTIVE OPTIMIZATION: INTERACTIVE AND EVOLUTIONARY APPROACHES, 2008, 5252 : 373 - +
  • [5] Comparison of two Pareto frontier approximations
    Berezkin, V. E.
    Lotov, A. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2014, 54 (09) : 1402 - 1410
  • [6] Comparison of two Pareto frontier approximations
    V. E. Berezkin
    A. V. Lotov
    Computational Mathematics and Mathematical Physics, 2014, 54 : 1402 - 1410
  • [7] Pareto approximations for the bicriteria scheduling problem
    Bilò, V
    Flammini, M
    Moscardelli, L
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2006, 66 (03) : 393 - 402
  • [8] Constraint Qualifications and Proper Pareto Optimality Conditions for Multiobjective Problems with Equilibrium Constraints
    Peng Zhang
    Jin Zhang
    Gui-Hua Lin
    Xinmin Yang
    Journal of Optimization Theory and Applications, 2018, 176 : 763 - 782
  • [9] Constraint Qualifications and Proper Pareto Optimality Conditions for Multiobjective Problems with Equilibrium Constraints
    Zhang, Peng
    Zhang, Jin
    Lin, Gui-Hua
    Yang, Xinmin
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 176 (03) : 763 - 782
  • [10] Sufficient conditions for global weak Pareto solutions in multiobjective optimization
    Bao, Truong Q.
    Mordukhovich, Boris S.
    POSITIVITY, 2012, 16 (03) : 579 - 602