Validation of automated magnetic resonance image segmentation for radiation therapy planning in prostate cancer

被引:15
|
作者
Kuisma, Anna [1 ]
Ranta, Iiro [1 ,2 ,3 ]
Keyrilainen, Jani [1 ,2 ,3 ]
Suilamo, Sami [1 ,2 ]
Wright, Pauliina [1 ,2 ]
Pesola, Marko [4 ]
Warner, Lizette [5 ]
Loyttyniemi, Eliisa [6 ]
Minn, Heikki [1 ]
机构
[1] Turku Univ Hosp, Dept Oncol & Radiotherapy, Hameentie 11, FI-20521 Turku, Finland
[2] Turku Univ Hosp, Dept Med Phys, Hameentie 11, FI-20521 Turku, Finland
[3] Univ Turku, Dept Phys & Astron, Vesilinnantie 5, FI-20014 Turku, Finland
[4] Philips MR Therapy Oy, Ayritie 4, FI-01510 Vantaa, Finland
[5] Philips MR Oncol, 3000 Minuteman Rd, Andover, MA 01810 USA
[6] Univ Turku, Dept Biostat, Kiinamyllynkatu 10, FI-20014 Turku, Finland
来源
PHYSICS & IMAGING IN RADIATION ONCOLOGY | 2020年 / 13卷
关键词
Prostate cancer; MRI; Auto-segmentation; Delineation; Radiotherapy planning; SOFTWARE;
D O I
10.1016/j.phro.2020.02.004
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background and purpose: Magnetic resonance imaging (MRI) is increasingly used in radiation therapy planning of prostate cancer (PC) to reduce target volume delineation uncertainty. This study aimed to assess and validate the performance of a fully automated segmentation tool (AST) in MRI based radiation therapy planning of PC. Material and methods: Pelvic structures of 65 PC patients delineated in an MRI-only workflow according to established guidelines were included in the analysis. Automatic vs manual segmentation by an experienced oncologist was compared with geometrical parameters, such as the dice similarity coefficient (DSC). Fifteen patients had a second MRI within 15 days to assess repeatability of the AST for prostate and seminal vesicles. Furthermore, we investigated whether hormonal therapy or body mass index (BMI) affected the AST results. Results: The AST showed high agreement with manual segmentation expressed as DSC (mean, SD) for delineating prostate (0.84, 0.04), bladder (0.92, 0.04) and rectum (0.86, 0.04). For seminal vesicles (0.56, 0.17) and penile bulb (0.69, 0.12) the respective agreement was moderate. Performance of AST was not influenced by neoadjuvant hormonal therapy, although those on treatment had significantly smaller prostates than the hormone-naive patients (p < 0.0001). In repeat assessment, consistency of prostate delineation resulted in mean DSC of 0.89, (SD 0.03) between the paired MRI scans for AST, while mean DSC of manual delineation was 0.82, (SD 0.05). Conclusion: Fully automated MRI segmentation tool showed good agreement and repeatability compared with manual segmentation and was found clinically robust in patients with PC. However, manual review and adjustment of some structures in individual cases remain important in clinical use.
引用
收藏
页码:14 / 20
页数:7
相关论文
共 50 条
  • [11] Comparison of automated segmentation techniques for magnetic resonance images of the prostate
    Isaksson, Lars Johannes
    Pepa, Matteo
    Summers, Paul
    Zaffaroni, Mattia
    Vincini, Maria Giulia
    Corrao, Giulia
    Mazzola, Giovanni Carlo
    Rotondi, Marco
    Lo Presti, Giuliana
    Raimondi, Sara
    Gandini, Sara
    Volpe, Stefania
    Haron, Zaharudin
    Alessi, Sarah
    Pricolo, Paola
    Mistretta, Francesco Alessandro
    Luzzago, Stefano
    Cattani, Federica
    Musi, Gennaro
    De Cobelli, Ottavio
    Cremonesi, Marta
    Orecchia, Roberto
    Marvaso, Giulia
    Petralia, Giuseppe
    Jereczek-Fossa, Barbara Alicja
    BMC MEDICAL IMAGING, 2023, 23 (01)
  • [12] Comparison of automated segmentation techniques for magnetic resonance images of the prostate
    Lars Johannes Isaksson
    Matteo Pepa
    Paul Summers
    Mattia Zaffaroni
    Maria Giulia Vincini
    Giulia Corrao
    Giovanni Carlo Mazzola
    Marco Rotondi
    Giuliana Lo Presti
    Sara Raimondi
    Sara Gandini
    Stefania Volpe
    Zaharudin Haron
    Sarah Alessi
    Paola Pricolo
    Francesco Alessandro Mistretta
    Stefano Luzzago
    Federica Cattani
    Gennaro Musi
    Ottavio De Cobelli
    Marta Cremonesi
    Roberto Orecchia
    Giulia Marvaso
    Giuseppe Petralia
    Barbara Alicja Jereczek-Fossa
    BMC Medical Imaging, 23
  • [13] Comparison of automated segmentation techniques for magnetic resonance images of the prostate
    Pepa, M.
    Isaksson, J. L.
    Zaffaroni, M.
    Summers, P. E.
    Marvaso, G.
    Lo Presti, G.
    Raimondi, S.
    Gandini, S.
    Volpe, S.
    Rojas, D. P.
    Zerini, D.
    Haron, Z.
    Pricolo, P.
    Alessi, S.
    Mistretta, F. A.
    Luzzago, S.
    Cattani, F.
    De Cobelli, O.
    Cassano, E.
    Cremonesi, M.
    Bellomi, M.
    Orecchia, R.
    Petralia, G.
    Jereczek-Fossa, B. A.
    RADIOTHERAPY AND ONCOLOGY, 2021, 161 : S772 - S773
  • [14] COMPARISON OF AUTOMATED SEGMENTATION TECHNIQUES FOR MAGNETIC RESONANCE IMAGING OF THE PROSTATE
    Pepa, Matteo
    Isaksson, Johannes Lars
    Zaffaroni, Mattia
    Summers, Paul Eugene
    Marvaso, Giulia
    Lo Presti, Giuliana
    Raimondi, Sara
    Gandini, Sara
    Volpe, Stefania
    Zerini, Dario
    Haron, Zaharudin
    Pricolo, Paola
    Alessi, Sarah
    Mistretta, Francesco Alessandro
    Luzzago, Stefano
    Cattani, Federica
    De Cobelli, Ottavio
    Cassano, Enrico
    Cremonesi, Marta
    Bellomi, Massimo
    Orecchia, Roberto
    Petralia, Giuseppe
    Jereczek-Fossa, Barbara Alicja
    ANTICANCER RESEARCH, 2021, 41 (10) : 5262 - 5264
  • [15] Clinical experience and workflow challenges with magnetic resonance-only radiation therapy simulation and planning for prostate cancer
    Tyagi, Neelam
    Zelefsky, Michael J.
    Wibmer, Andreas
    Zakian, Kristen
    Burleson, Sarah
    Happersett, Laura
    Halkola, Aleksi
    Kadbi, Mo
    Hunt, Margie
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2020, 16 : 43 - 49
  • [16] DOSE-VOLUME DIFFERENCES FOR COMPUTED TOMOGRAPHY AND MAGNETIC RESONANCE IMAGING SEGMENTATION AND PLANNING FOR PROTON PROSTATE CANCER THERAPY
    Yeung, Anamaria R.
    Vargas, Carlos E.
    Falchook, Aaron
    Louis, Debbie
    Olivier, Kenneth
    Keole, Sameer
    Yeung, Daniel
    Mendenhall, Nancy P.
    Li, Zuofeng
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2008, 72 (05): : 1426 - 1433
  • [17] Planning target volumes for image-guided radiation therapy of prostate cancer
    Craig, T
    Sharpe, M
    Keller, H
    Jaffray, D
    MEDICAL PHYSICS, 2005, 32 (06) : 1948 - 1948
  • [18] Automated magnetic resonance image segmentation of the anterior cruciate ligament
    Flannery, Sean W.
    Kiapour, Ata M.
    Edgar, David J.
    Murray, Martha M.
    Fleming, Braden C.
    JOURNAL OF ORTHOPAEDIC RESEARCH, 2021, 39 (04) : 831 - 840
  • [19] Convolutional Neural Networks for Prostate Magnetic Resonance Image Segmentation
    Hassanzadeh, Tahereh
    Hamey, Leonard G. C.
    Ho-Shon, Kevin
    IEEE ACCESS, 2019, 7 : 36748 - 36760
  • [20] Clinical experience and cost evaluation of magnetic resonance imaging-only workflow in radiation therapy planning of prostate cancer
    Keyrilainen, Jani
    Sjoblom, Olli
    Turnbull-Smith, Sonja
    Hovirinta, Taru
    Minn, Heikki
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2021, 19 : 66 - 71