BOUNDS ON EQUIANGULAR LINES AND ON RELATED SPHERICAL CODES

被引:18
|
作者
Bukh, Boris [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
equiangular lines; spherical codes; Gram matrices; Ramsey theory; SETS;
D O I
10.1137/15M1036920
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An L-spherical code is a set of Euclidean unit vectors whose pairwise inner products belong to the set L. We show, for a fixed 0 < alpha, beta < 1, that the size of any [-1, -beta]{alpha}-spherical code is at most linear in the dimension. In particular, this bound applies to sets of lines such that every two are at a fixed angle to each another.
引用
收藏
页码:549 / 554
页数:6
相关论文
共 50 条
  • [21] Quaternionic equiangular lines
    Et-Taoui, Boumediene
    ADVANCES IN GEOMETRY, 2020, 20 (02) : 273 - 284
  • [22] Equiangular lines in ℂ3
    Et-Taoui, Boumediene
    Lehbab, Imene
    Makhlouf, Abdenacer
    ADVANCES IN GEOMETRY, 2024, 24 (04) : 507 - 533
  • [23] Universal Lower Bounds for Potential Energy of Spherical Codes
    P. G. Boyvalenkov
    P. D. Dragnev
    D. P. Hardin
    E. B. Saff
    M. M. Stoyanova
    Constructive Approximation, 2016, 44 : 385 - 415
  • [24] Improved linear programming bounds for antipodal spherical codes
    Anstreicher, KM
    DISCRETE & COMPUTATIONAL GEOMETRY, 2002, 28 (01) : 107 - 114
  • [25] Universal Lower Bounds for Potential Energy of Spherical Codes
    Boyvalenkov, P. G.
    Dragnev, P. D.
    Hardin, D. P.
    Saff, E. B.
    Stoyanova, M. M.
    CONSTRUCTIVE APPROXIMATION, 2016, 44 (03) : 385 - 415
  • [26] EXTREMAL POLYNOMIALS FOR OBTAINING BOUNDS FOR SPHERICAL CODES AND DESIGNS
    BOYVALENKOV, P
    DISCRETE & COMPUTATIONAL GEOMETRY, 1995, 14 (02) : 167 - 183
  • [27] Improved Delsarte bounds for spherical codes in small dimensions
    Pfender, Florian
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (06) : 1133 - 1147
  • [28] Improved Linear Programming Bounds for Antipodal Spherical Codes
    Discrete & Computational Geometry, 2002, 28 : 107 - 114
  • [29] Lower Energy Bounds for Antipodal Spherical Codes and for Codes in Infinite Projective Spaces
    Boyvalenkov, Peter G.
    Hardin, Douglas P.
    Saff, Edward B.
    Dragnev, Peter D.
    Stoyanova, Maya M.
    2016 XV INTERNATIONAL SYMPOSIUM PROBLEMS OF REDUNDANCY IN INFORMATION AND CONTROL SYSTEMS (REDUNDANCY), 2016, : 28 - 32
  • [30] Equiangular lines in Euclidean spaces
    Greaves, Gary
    Koolen, Jacobus H.
    Munemasa, Akihiro
    Szoellosi, Ferenc
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2016, 138 : 208 - 235