Lower Energy Bounds for Antipodal Spherical Codes and for Codes in Infinite Projective Spaces

被引:0
|
作者
Boyvalenkov, Peter G. [1 ,2 ]
Hardin, Douglas P. [3 ]
Saff, Edward B. [3 ]
Dragnev, Peter D. [4 ]
Stoyanova, Maya M. [5 ]
机构
[1] South Western Univ Bulgaria, Bulgarian Acad Sci, Inst Math & Informat, Blagoevgrad, Bulgaria
[2] South Western Univ Bulgaria, Fac Math & Nat Sci, Blagoevgrad, Bulgaria
[3] Vanderbilt Univ, Ctr Construct Approximat, Dept Math, Nashville, TN USA
[4] Indiana Purdue Univ, Dept Math Sci, Ft Wayne, IN USA
[5] Univ Sofia, Fac Math & Informat, Sofia, Bulgaria
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We apply linear programming (polynomial) techniques for obtaining lower bounds for the potential energy of antipodal spherical codes. For codes attaining our bounds we prove Lloyd type theorems. We also provide general formulations of our recent universal lower bound on energy of codes in infinite projective spaces.
引用
收藏
页码:28 / 32
页数:5
相关论文
共 50 条
  • [1] Linear programming bounds for codes in infinite projective spaces
    Boyvalenkov P.
    Danev D.
    Mitradjieva M.
    Journal of Geometry, 1999, 66 (1-2) : 42 - 54
  • [2] Improved linear programming bounds for antipodal spherical codes
    Anstreicher, KM
    DISCRETE & COMPUTATIONAL GEOMETRY, 2002, 28 (01) : 107 - 114
  • [3] Improved Linear Programming Bounds for Antipodal Spherical Codes
    Discrete & Computational Geometry, 2002, 28 : 107 - 114
  • [4] Universal Lower Bounds for Potential Energy of Spherical Codes
    Boyvalenkov, P. G.
    Dragnev, P. D.
    Hardin, D. P.
    Saff, E. B.
    Stoyanova, M. M.
    CONSTRUCTIVE APPROXIMATION, 2016, 44 (03) : 385 - 415
  • [5] Universal Lower Bounds for Potential Energy of Spherical Codes
    P. G. Boyvalenkov
    P. D. Dragnev
    D. P. Hardin
    E. B. Saff
    M. M. Stoyanova
    Constructive Approximation, 2016, 44 : 385 - 415
  • [6] New lower bounds for identifying codes in infinite grids
    Junnila, Ville
    Laihonen, Tero
    2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012, : 676 - 680
  • [7] Lower bounds for identifying codes in some infinite grids
    Martin, Ryan
    Stanton, Brendon
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [8] Energy bounds for codes and designs in Hamming spaces
    Boyvalenkov, P. G.
    Dragnev, P. D.
    Hardin, D. P.
    Saff, E. B.
    Stoyanova, M. M.
    DESIGNS CODES AND CRYPTOGRAPHY, 2017, 82 (1-2) : 411 - 433
  • [9] Energy bounds for codes in polynomial metric spaces
    P. G. Boyvalenkov
    P. D. Dragnev
    D. P. Hardin
    E. B. Saff
    M. M. Stoyanova
    Analysis and Mathematical Physics, 2019, 9 : 781 - 808
  • [10] Energy bounds for codes and designs in Hamming spaces
    P. G. Boyvalenkov
    P. D. Dragnev
    D. P. Hardin
    E. B. Saff
    M. M. Stoyanova
    Designs, Codes and Cryptography, 2017, 82 : 411 - 433