Lower Energy Bounds for Antipodal Spherical Codes and for Codes in Infinite Projective Spaces

被引:0
|
作者
Boyvalenkov, Peter G. [1 ,2 ]
Hardin, Douglas P. [3 ]
Saff, Edward B. [3 ]
Dragnev, Peter D. [4 ]
Stoyanova, Maya M. [5 ]
机构
[1] South Western Univ Bulgaria, Bulgarian Acad Sci, Inst Math & Informat, Blagoevgrad, Bulgaria
[2] South Western Univ Bulgaria, Fac Math & Nat Sci, Blagoevgrad, Bulgaria
[3] Vanderbilt Univ, Ctr Construct Approximat, Dept Math, Nashville, TN USA
[4] Indiana Purdue Univ, Dept Math Sci, Ft Wayne, IN USA
[5] Univ Sofia, Fac Math & Informat, Sofia, Bulgaria
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We apply linear programming (polynomial) techniques for obtaining lower bounds for the potential energy of antipodal spherical codes. For codes attaining our bounds we prove Lloyd type theorems. We also provide general formulations of our recent universal lower bound on energy of codes in infinite projective spaces.
引用
收藏
页码:28 / 32
页数:5
相关论文
共 50 条
  • [41] Additive twisted codes: new distance bounds and infinite families of quantum codes
    Dastbasteh, Reza
    Lisonek, Petr
    DESIGNS CODES AND CRYPTOGRAPHY, 2025,
  • [42] On the Bounds of Certain Maximal Linear Codes in a Projective Space
    Pai, B. Srikanth
    Rajan, B. Sundar
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (09) : 4923 - 4927
  • [43] BOUNDS FOR SPHERICAL CODES: THE LEVENSHTEIN FRAMEWORK LIFTED
    Boyvalenkov, P. G.
    Dragnev, P. D.
    Hardin, D. P.
    Saff, E. B.
    Stoyanova, M. M.
    MATHEMATICS OF COMPUTATION, 2021, 90 (329) : 1323 - 1356
  • [45] New upper bounds for spherical codes and packings
    Sardari, Naser Talebizadeh
    Zargar, Masoud
    MATHEMATISCHE ANNALEN, 2024, 389 (04) : 3653 - 3703
  • [46] SPHERE PACKING BOUNDS VIA SPHERICAL CODES
    Cohn, Henry
    Zhao, Yufei
    DUKE MATHEMATICAL JOURNAL, 2014, 163 (10) : 1965 - 2002
  • [47] On linear programming bounds for spherical codes and designs
    Samorodnitsky, A
    DISCRETE & COMPUTATIONAL GEOMETRY, 2004, 31 (03) : 385 - 394
  • [48] Upper bounds on the minimum distance of spherical codes
    Boyvalenkov, PG
    Danev, DP
    Bumova, SP
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (05) : 1576 - 1581
  • [49] On Linear Programming Bounds for Spherical Codes and Designs
    Alex Samorodnitsky
    Discrete & Computational Geometry, 2004, 31 : 385 - 394
  • [50] On the Bounds of Certain Maximal Linear Codes in a Projective Space
    Pai, Srikanth B.
    Rajan, B. Sundar
    2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 591 - 595