BOUNDS ON EQUIANGULAR LINES AND ON RELATED SPHERICAL CODES

被引:18
|
作者
Bukh, Boris [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
equiangular lines; spherical codes; Gram matrices; Ramsey theory; SETS;
D O I
10.1137/15M1036920
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An L-spherical code is a set of Euclidean unit vectors whose pairwise inner products belong to the set L. We show, for a fixed 0 < alpha, beta < 1, that the size of any [-1, -beta]{alpha}-spherical code is at most linear in the dimension. In particular, this bound applies to sets of lines such that every two are at a fixed angle to each another.
引用
收藏
页码:549 / 554
页数:6
相关论文
共 50 条
  • [41] Energy bounds for weighted spherical codes and designs via linear programming
    Borodachov, S. V.
    Boyvalenkov, P. G.
    Dragnev, P. D.
    Hardin, D. P.
    Saff, E. B.
    Stoyanova, M. M.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2025, 15 (01)
  • [42] Equiangular lines and covers of the complete graph
    Coutinho, G.
    Godsil, C.
    Shirazi, H.
    Zhan, H.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 488 : 264 - 283
  • [43] Computing Equiangular Lines in Complex Space
    Grassl, Markus
    MATHEMATICAL METHODS IN COMPUTER SCIENCE: ESSAYS IN MEMORY OF THOMAS BETH, 2008, 5393 : 89 - 104
  • [44] L-POLYTOPES AND EQUIANGULAR LINES
    DEZA, M
    GRISHUKHIN, VP
    DISCRETE APPLIED MATHEMATICS, 1995, 56 (2-3) : 181 - 214
  • [45] Equiangular lines in Cr (part II)
    Et-Taoui, B
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2002, 13 (04): : 483 - 486
  • [46] Equiangular lines in the real space Rd
    Sane, Sharad
    JOURNAL OF ANALYSIS, 2021, 29 (02): : 581 - 589
  • [47] Bounds and Algorithms for Frameproof Codes and Related Combinatorial Structures
    Dalai, Marco
    Della Fiore, Stefano
    Rescigno, Adele A.
    Vaccaro, Ugo
    2023 IEEE INFORMATION THEORY WORKSHOP, ITW, 2023, : 544 - 549
  • [48] Redundancy-Related Bounds for Generalized Huffman Codes
    Baer, Michael B.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (04) : 2278 - 2290
  • [49] 276 EQUIANGULAR LINES IN R23
    SEIDEL, JJ
    TRANSACTIONS OF THE NEW YORK ACADEMY OF SCIENCES, 1974, 36 (06): : 589 - 589
  • [50] On Weyl-Heisenberg orbits of equiangular lines
    Khatirinejad, Mahdad
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2008, 28 (03) : 333 - 349