A proof of the inf-sup condition for the Stokes equations on Lipschitz domains

被引:38
|
作者
Bramble, JH [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
来源
关键词
inf-sup condition; stokes equations;
D O I
10.1142/S0218202503002544
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to present a rather simple proof of an inequality of Necas(9) which is equivalent to the inf-sup condition. This inequality is fundamental in the study of the Stokes equations. The boundary of the domain is only assumed to be Lipschitz.
引用
收藏
页码:361 / 371
页数:11
相关论文
共 50 条
  • [31] GENERALIZED INF-SUP CONDITIONS FOR TSCHEBYSCHEFF SPECTRAL APPROXIMATION OF THE STOKES PROBLEM
    BERNARDI, C
    CANUTO, C
    MADAY, Y
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (06) : 1237 - 1271
  • [32] On the inf-sup condition of mixed finite element formulations for acoustic fluids
    Bao, WZ
    Wang, XD
    Bathe, KJ
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2001, 11 (05): : 883 - 901
  • [33] A lower bound for the inf-sup condition's constant for the divergence operator
    Del Pino, Stephane
    Razafison, Ulrich
    Yakoubi, Driss
    COMPTES RENDUS MATHEMATIQUE, 2008, 346 (9-10) : 533 - 538
  • [34] On a modified Hilbert transformation, the discrete inf-sup condition, and error estimates
    Loescher, Richard
    Steinbach, Olaf
    Zank, Marco
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 171 : 114 - 138
  • [35] For the inf-sup condition on mesh-dependent norms on a nonconvex polygon
    Choi, Sungkyu
    Kweon, Jae Ryong
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (05) : 1253 - 1264
  • [36] On the regularization and approximation of saddle point problems without inf-sup condition
    Ito, Kazufumi
    Kunisch, Karl
    Peichl, Gunther
    COMPUTATIONAL & APPLIED MATHEMATICS, 2002, 21 (01): : 245 - 274
  • [37] A REDUCED DISCRETE INF-SUP CONDITION IN Lp FOR INCOMPRESSIBLE FLOWS AND APPLICATION
    Chacon Rebollo, Tomas
    Girault, Vivette
    Gomez Marmol, Macarena
    Sanchez Munoz, Isabel
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (04): : 1219 - 1238
  • [38] The inf-sup condition and its evaluation for mixed finite element methods
    Bathe, KJ
    COMPUTERS & STRUCTURES, 2001, 79 (02) : 243 - 252
  • [39] The inf-sup condition and error estimates of the Nitsche method for evolutionary diffusion-advection-reaction equations
    Ueda, Yuki
    Saito, Norikazu
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2019, 36 (01) : 209 - 238
  • [40] INF-SUP CONDITION FOR SPHERICAL POLYNOMIALS AND RADIAL BASIS FUNCTIONS ON SPHERES
    Sloan, Ian H.
    Wendland, Holger
    MATHEMATICS OF COMPUTATION, 2009, 78 (267) : 1319 - 1331