On a modified Hilbert transformation, the discrete inf-sup condition, and error estimates

被引:0
|
作者
Loescher, Richard [1 ]
Steinbach, Olaf [1 ]
Zank, Marco [1 ]
机构
[1] Graz Univ Technol, Inst Numer Math, Steyrergasse 30, A-8010 Graz, Austria
关键词
Modified Hilbert transformation; Discrete inf-sup condition; Error estimates; PATCH TEST; BABUSKA;
D O I
10.1016/j.camwa.2024.07.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze the discrete inf-sup condition and related error estimates for a modified Hilbert transformation as used in the space-time discretization of time-dependent partial differential equations. It turns out that the stability constant CS S depends linearly on the finite element mesh size h . While the ratio CS/h S / h decreases as 1/T T for T -> infinity , numerical results indicate a decay of CS/h S / h similar or equal to v - a for some a is an element of [ 41 , 13 ] in the polynomial degree v of the finite element basis functions. However, in most cases, we can show optimal convergence. We present a series of numerical experiments which illustrate the theoretical findings.
引用
收藏
页码:114 / 138
页数:25
相关论文
共 50 条
  • [1] THE INF-SUP CONDITION AND ERROR-ESTIMATES FOR THE ARNOLD-FALK PLATE BENDING ELEMENT
    DURAN, R
    NUMERISCHE MATHEMATIK, 1991, 59 (08) : 769 - 778
  • [2] A REDUCED DISCRETE INF-SUP CONDITION IN Lp FOR INCOMPRESSIBLE FLOWS AND APPLICATION
    Chacon Rebollo, Tomas
    Girault, Vivette
    Gomez Marmol, Macarena
    Sanchez Munoz, Isabel
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (04): : 1219 - 1238
  • [3] The inf-sup condition and error estimates of the Nitsche method for evolutionary diffusion-advection-reaction equations
    Ueda, Yuki
    Saito, Norikazu
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2019, 36 (01) : 209 - 238
  • [4] The inf-sup condition and error estimates of the Nitsche method for evolutionary diffusion–advection-reaction equations
    Yuki Ueda
    Norikazu Saito
    Japan Journal of Industrial and Applied Mathematics, 2019, 36 : 209 - 238
  • [5] An optimally consistent stabilization of the inf-sup condition
    Leborgne, G
    NUMERISCHE MATHEMATIK, 2002, 91 (01) : 35 - 56
  • [6] Characterizing the inf-sup condition on product spaces
    Gatica, Gabriel N.
    Sayas, Francisco-Javier
    NUMERISCHE MATHEMATIK, 2008, 109 (02) : 209 - 231
  • [7] An optimally consistent stabilization of the inf-sup condition
    G. Leborgne
    Numerische Mathematik, 2002, 91 : 35 - 56
  • [8] Characterizing the inf-sup condition on product spaces
    Gabriel N. Gatica
    Francisco-Javier Sayas
    Numerische Mathematik, 2008, 109 : 209 - 231
  • [9] Analysis of the checkerboard mode and inf-sup condition
    Cheng, XL
    Ye, XD
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2002, 18 (06): : 451 - 458
  • [10] On evaluating the inf-sup condition for plate bending elements
    Iosilevich, A
    Bathe, KJ
    Brezzi, F
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1997, 40 (19) : 3639 - 3663