A proof of the inf-sup condition for the Stokes equations on Lipschitz domains

被引:38
|
作者
Bramble, JH [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
来源
关键词
inf-sup condition; stokes equations;
D O I
10.1142/S0218202503002544
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to present a rather simple proof of an inequality of Necas(9) which is equivalent to the inf-sup condition. This inequality is fundamental in the study of the Stokes equations. The boundary of the domain is only assumed to be Lipschitz.
引用
收藏
页码:361 / 371
页数:11
相关论文
共 50 条
  • [21] The inf-sup condition for low order elements on anisotropic meshes
    Apel T.
    Nicaise S.
    CALCOLO, 2004, 41 (2) : 89 - 113
  • [22] On the necessity of the inf-sup condition for a mixed finite element formulation
    Bertrand, Fleurianne
    Boffi, Daniele
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 45 (01) : 1 - 35
  • [23] The inf-sup condition for low order elements on anisotropic meshes
    T. Apel
    S. Nicaise
    CALCOLO, 2004, 41 : 89 - 113
  • [24] Subdifferentiability and inf-sup theorems
    Moussaoui, M
    Volle, M
    POSITIVITY, 1999, 3 (04) : 345 - 355
  • [25] Inf-sup condition tests for shell/plate finite elements
    Gilewski, W.
    Sitek, M.
    SHELL STRUCTURES: THEORY AND APPLICATIONS, VOL 2, 2010, : 233 - 236
  • [26] Inf-sup conditions for the mortar spectral element discretization of the Stokes problem
    F. Ben Belgacem
    C. Bernardi
    N. Chorfi
    Y. Maday
    Numerische Mathematik, 2000, 85 : 257 - 281
  • [27] Subdifferentiability and Inf-Sup Theorems
    Mohammed Moussaoui
    Michel Volle
    Positivity, 1999, 3 : 345 - 355
  • [28] Inf-sup conditions for the mortar spectral element discretization of the Stokes problem
    Belgacem, FB
    Bernardi, C
    Chorfi, N
    Maday, Y
    NUMERISCHE MATHEMATIK, 2000, 85 (02) : 257 - 281
  • [29] THE INF-SUP CONDITION TESTS FOR SHELL/PLATE FINITE ELEMENTS
    Gilewski, W.
    Sitek, M.
    ARCHIVES OF CIVIL ENGINEERING, 2011, 57 (04) : 425 - 447
  • [30] The inf-sup condition for low order elements on anisotropic meshes
    Apel, T
    Nicaise, S
    CALCOLO, 2004, 41 (02) : 89 - 113