The max-plus algebra of exponent matrices of tiled orders

被引:2
|
作者
Dokuchaev, Mikhailo [1 ]
Kirichenko, Vladimir [2 ]
Kudryavtseva, Ganna [3 ]
Plakhotnyk, Makar [1 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Caixa Postal 66281, BR-05315970 Sao Paulo, SP, Brazil
[2] Taras Shevchenko Natl Univ Kyiv, Fac Mech & Math, Volodymyrska Str,64, UA-01033 Kiev, Ukraine
[3] Univ Ljubljana, Fac Civil & Geodet Engn, Jamova Cesta 2, SI-1000 Ljubljana, Slovenia
基金
巴西圣保罗研究基金会;
关键词
Exponent matrix; Max-plus algebra; Tiled order; LARGE GLOBAL DIMENSION; FINITE LATTICE TYPE; 3-PARTITE SUBAMALGAMS; GORENSTEIN; TAMENESS; RINGS; FORM;
D O I
10.1016/j.jalgebra.2017.05.045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An exponent matrix is an n x n matrix A = (a(ij)) over N-0 satisfying (1) a(ii) = 0 for all i = 1, ... , n and (2) a(ij) + a(jk) >= a(ik) for all pairwise distinct i, j, k is an element of{1, ... , n}. In the present paper we study the set epsilon(n) of all non-negative n x n exponent matrices as an algebra with the operations circle plus of component-wise maximum and circle dot of component-wise addition. We provide a basis of the algebra (epsilon(n), circle plus, circle dot, 0) and give a row and a column decompositions of a matrix A is an element of epsilon(n) with respect to this basis. This structure result determines all n x n-tiled orders over a fixed discrete valuation domain. We also study automorphisms of epsilon(n) with respect to each of the operations circle plus and circle dot and prove that Aut(epsilon(n), circle plus, circle dot, 0) congruent to Aut(epsilon(n), circle plus) congruent to Aut(epsilon(n), circle dot) congruent to S-n X C-2, n > 2. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [41] The Minimizing Vector Theorem in Symmetrized Max-Plus Algebra
    Ozel, Cenap
    Piekosz, Artur
    Wajch, Eliza
    Zekraoui, Hanifa
    JOURNAL OF CONVEX ANALYSIS, 2019, 26 (02) : 661 - 686
  • [42] Soluble approximation of linear systems in max-plus algebra
    Cechlárová, K
    Cuninghame-Green, RA
    SYSTEM STRUCTURE AND CONTROL 2001, VOLS 1 AND 2, 2001, : 809 - 811
  • [43] The max-plus algebra approach to railway timetable design
    Goverde, RMP
    COMPUTERS IN RAILWAYS VI, 1998, 2 : 339 - 350
  • [44] On the boolean minimal realization problem in the max-plus algebra
    De Schutter, Bart
    Blondel, Vincent
    de Vries, Remco
    De Moor, Bart
    Systems and Control Letters, 1998, 35 (02): : 69 - 78
  • [45] A uniform synchronization problem over max-plus algebra
    AbdulKadir Datti
    Abdulhadi Aminu
    Afrika Matematika, 2021, 32 : 567 - 576
  • [46] On a generalization of power algorithms over max-plus algebra
    Kistosil Fahim
    Jacob Subiono
    Discrete Event Dynamic Systems, 2017, 27 : 181 - 203
  • [47] Max-Plus Algebra and Mathematical Fear in Dynamic Optimization
    Pierre Bernhard
    Set-Valued Analysis, 2000, 8 : 71 - 84
  • [48] Interval global optimization problem in max-plus algebra
    Myskova, Helena
    Plavka, Jan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2025, 714 : 45 - 63
  • [49] Max-plus algebra and mathematical fear in dynamic optimization
    Bernhard, P
    SET-VALUED ANALYSIS, 2000, 8 (1-2): : 71 - 84
  • [50] On the boolean minimal realization problem in the max-plus algebra
    De Schutter, B
    Blondel, V
    de Vries, R
    De Moor, B
    SYSTEMS & CONTROL LETTERS, 1998, 35 (02) : 69 - 78