The max-plus algebra of exponent matrices of tiled orders

被引:2
|
作者
Dokuchaev, Mikhailo [1 ]
Kirichenko, Vladimir [2 ]
Kudryavtseva, Ganna [3 ]
Plakhotnyk, Makar [1 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Caixa Postal 66281, BR-05315970 Sao Paulo, SP, Brazil
[2] Taras Shevchenko Natl Univ Kyiv, Fac Mech & Math, Volodymyrska Str,64, UA-01033 Kiev, Ukraine
[3] Univ Ljubljana, Fac Civil & Geodet Engn, Jamova Cesta 2, SI-1000 Ljubljana, Slovenia
基金
巴西圣保罗研究基金会;
关键词
Exponent matrix; Max-plus algebra; Tiled order; LARGE GLOBAL DIMENSION; FINITE LATTICE TYPE; 3-PARTITE SUBAMALGAMS; GORENSTEIN; TAMENESS; RINGS; FORM;
D O I
10.1016/j.jalgebra.2017.05.045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An exponent matrix is an n x n matrix A = (a(ij)) over N-0 satisfying (1) a(ii) = 0 for all i = 1, ... , n and (2) a(ij) + a(jk) >= a(ik) for all pairwise distinct i, j, k is an element of{1, ... , n}. In the present paper we study the set epsilon(n) of all non-negative n x n exponent matrices as an algebra with the operations circle plus of component-wise maximum and circle dot of component-wise addition. We provide a basis of the algebra (epsilon(n), circle plus, circle dot, 0) and give a row and a column decompositions of a matrix A is an element of epsilon(n) with respect to this basis. This structure result determines all n x n-tiled orders over a fixed discrete valuation domain. We also study automorphisms of epsilon(n) with respect to each of the operations circle plus and circle dot and prove that Aut(epsilon(n), circle plus, circle dot, 0) congruent to Aut(epsilon(n), circle plus) congruent to Aut(epsilon(n), circle dot) congruent to S-n X C-2, n > 2. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [31] Linear matrix period in max-plus algebra
    Gavalec, M
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 307 (1-3) : 167 - 182
  • [32] Interval robustness of (interval) max-plus matrices
    Myskova, Helena
    Plavka, Jan
    DISCRETE APPLIED MATHEMATICS, 2020, 284 : 8 - 19
  • [33] A uniform synchronization problem over max-plus algebra
    Datti, AbdulKadir
    Aminu, Abdulhadi
    AFRIKA MATEMATIKA, 2021, 32 (3-4) : 567 - 576
  • [34] Computing an eigenvector of a Monge matrix in max-plus algebra
    Gavalec, Martin
    Plavka, Jan
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2006, 63 (03) : 543 - 551
  • [35] Max-plus algebra modeling for a public transport system
    Nait-Sidi-Moh, A
    Manier, MA
    El Moudni, A
    Manier, H
    CYBERNETICS AND SYSTEMS, 2005, 36 (02) : 165 - 180
  • [36] Ordered Structures of Polynomials over Max-Plus Algebra
    Wang, Cailu
    Xia, Yuanqing
    Tao, Yuegang
    SYMMETRY-BASEL, 2021, 13 (07):
  • [37] Soluble approximation of linear systems in max-plus algebra
    Cechlárová, K
    Cuninghame-Green, RA
    KYBERNETIKA, 2003, 39 (02) : 137 - 141
  • [38] Structure of the eigenspace of a Monge matrix in max-plus algebra
    Gavalec, Martin
    Plavka, Jan
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (05) : 596 - 606
  • [39] An Efficient Algorithm for Nontrivial Eigenvectors in Max-Plus Algebra
    Umer, Mubasher
    Hayat, Umar
    Abbas, Fazal
    SYMMETRY-BASEL, 2019, 11 (06):
  • [40] EIGENVALUES AND EIGENVECTORS OF LATIN SQUARES IN MAX-PLUS ALGEBRA
    Mufid, Muhammad
    Subiono
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2014, 20 (01) : 37 - 45