The max-plus algebra of exponent matrices of tiled orders

被引:2
|
作者
Dokuchaev, Mikhailo [1 ]
Kirichenko, Vladimir [2 ]
Kudryavtseva, Ganna [3 ]
Plakhotnyk, Makar [1 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Caixa Postal 66281, BR-05315970 Sao Paulo, SP, Brazil
[2] Taras Shevchenko Natl Univ Kyiv, Fac Mech & Math, Volodymyrska Str,64, UA-01033 Kiev, Ukraine
[3] Univ Ljubljana, Fac Civil & Geodet Engn, Jamova Cesta 2, SI-1000 Ljubljana, Slovenia
基金
巴西圣保罗研究基金会;
关键词
Exponent matrix; Max-plus algebra; Tiled order; LARGE GLOBAL DIMENSION; FINITE LATTICE TYPE; 3-PARTITE SUBAMALGAMS; GORENSTEIN; TAMENESS; RINGS; FORM;
D O I
10.1016/j.jalgebra.2017.05.045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An exponent matrix is an n x n matrix A = (a(ij)) over N-0 satisfying (1) a(ii) = 0 for all i = 1, ... , n and (2) a(ij) + a(jk) >= a(ik) for all pairwise distinct i, j, k is an element of{1, ... , n}. In the present paper we study the set epsilon(n) of all non-negative n x n exponent matrices as an algebra with the operations circle plus of component-wise maximum and circle dot of component-wise addition. We provide a basis of the algebra (epsilon(n), circle plus, circle dot, 0) and give a row and a column decompositions of a matrix A is an element of epsilon(n) with respect to this basis. This structure result determines all n x n-tiled orders over a fixed discrete valuation domain. We also study automorphisms of epsilon(n) with respect to each of the operations circle plus and circle dot and prove that Aut(epsilon(n), circle plus, circle dot, 0) congruent to Aut(epsilon(n), circle plus) congruent to Aut(epsilon(n), circle dot) congruent to S-n X C-2, n > 2. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [21] The max-plus algebra approach to transportation problems
    Goverde, RMP
    Bovy, PHL
    Olsder, GJ
    WORLD TRANSPORT RESEARCH, VOLS 1 TO 4: VOL 1: TRANSPORT MODES AND SYSTEMS; VOL 2: PLANNING, OPERATION, MANAGEMENT AND CONTROL; VOL 3: TRANSPORT MODELLING/ASSESSMENT; VOL 4: TRANSPORT POLICY, 1999, : B377 - B390
  • [22] An overview of transience bounds in max-plus algebra
    Nowak, Thomas
    Charron-Bost, Bernadette
    TROPICAL AND IDEMPOTENT MATHEMATICS AND APPLICATIONS, 2014, 616 : 277 - 289
  • [23] Exponent matrices and tiled orders over discrete valuation rings
    Kirichenko, VV
    Zelensky, AV
    Zhuravlev, VN
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2005, 15 (5-6) : 997 - 1012
  • [24] The cone of quasi-semimetrics and exponent matrices of tiled orders
    Dokuchaev, Mikhailo
    Mandel, Arnaldo
    Plakhotnyk, Makar
    DISCRETE MATHEMATICS, 2022, 345 (01)
  • [25] Generalized matrix period in max-plus algebra
    Molnárová, M
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 404 (1-3) : 345 - 366
  • [26] On integer eigenvectors and subeigenvectors in the max-plus algebra
    Butkovic, Peter
    MacCaig, Marie
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (08) : 3408 - 3424
  • [27] Reachability and invariance problems in max-plus algebra
    Gaubert, S
    Katz, R
    POSITIVE SYSTEMS, PROCEEDINGS, 2003, 294 : 15 - 22
  • [28] Max-Plus Algebra and Discrete Event Systems
    Komenda, J.
    Lahaye, S.
    Boimond, J. -L.
    van den Boom, T.
    IFAC PAPERSONLINE, 2017, 50 (01): : 1784 - 1790
  • [29] Eigenproblem for Queueing Systems in Max-Plus Algebra
    Gavalec, Martin
    Nemcova, Zuzana
    28TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ECONOMICS 2010, PTS I AND II, 2010, : 156 - 161
  • [30] A note on the characteristic equation in the max-plus algebra
    De Schutter, B
    De Moor, B
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 261 : 237 - 250