The max-plus algebra of exponent matrices of tiled orders

被引:2
|
作者
Dokuchaev, Mikhailo [1 ]
Kirichenko, Vladimir [2 ]
Kudryavtseva, Ganna [3 ]
Plakhotnyk, Makar [1 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Caixa Postal 66281, BR-05315970 Sao Paulo, SP, Brazil
[2] Taras Shevchenko Natl Univ Kyiv, Fac Mech & Math, Volodymyrska Str,64, UA-01033 Kiev, Ukraine
[3] Univ Ljubljana, Fac Civil & Geodet Engn, Jamova Cesta 2, SI-1000 Ljubljana, Slovenia
基金
巴西圣保罗研究基金会;
关键词
Exponent matrix; Max-plus algebra; Tiled order; LARGE GLOBAL DIMENSION; FINITE LATTICE TYPE; 3-PARTITE SUBAMALGAMS; GORENSTEIN; TAMENESS; RINGS; FORM;
D O I
10.1016/j.jalgebra.2017.05.045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An exponent matrix is an n x n matrix A = (a(ij)) over N-0 satisfying (1) a(ii) = 0 for all i = 1, ... , n and (2) a(ij) + a(jk) >= a(ik) for all pairwise distinct i, j, k is an element of{1, ... , n}. In the present paper we study the set epsilon(n) of all non-negative n x n exponent matrices as an algebra with the operations circle plus of component-wise maximum and circle dot of component-wise addition. We provide a basis of the algebra (epsilon(n), circle plus, circle dot, 0) and give a row and a column decompositions of a matrix A is an element of epsilon(n) with respect to this basis. This structure result determines all n x n-tiled orders over a fixed discrete valuation domain. We also study automorphisms of epsilon(n) with respect to each of the operations circle plus and circle dot and prove that Aut(epsilon(n), circle plus, circle dot, 0) congruent to Aut(epsilon(n), circle plus) congruent to Aut(epsilon(n), circle dot) congruent to S-n X C-2, n > 2. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [1] The robustness of interval matrices in max-plus algebra
    Myskova, H.
    Plavka, J.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 445 : 85 - 102
  • [2] On exponent matrices of tiled orders
    Dokuchaev, M.
    Kirichenko, V.
    Plakhotnyk, M.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (10)
  • [3] Eigenvectors of interval matrices over max-plus algebra
    Cechlárová, K
    DISCRETE APPLIED MATHEMATICS, 2005, 150 (1-3) : 2 - 15
  • [4] The weak robustness of interval matrices in max-plus algebra
    Plavka, Jan
    DISCRETE APPLIED MATHEMATICS, 2014, 173 : 92 - 101
  • [5] Eigenproblem for optimal-node matrices in max-plus algebra
    Wang, Hui-li
    Wang, Xue-ping
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (08): : 1105 - 1113
  • [6] The Cholesky Decomposition of Matrices over the Symmetrized Max-Plus Algebra
    Suroto
    Palupi, Diah Junia Eksi
    Suparwanto, Ari
    IAENG International Journal of Applied Mathematics, 2022, 52 (03):
  • [7] Max-plus: A network algebra
    Daniel-Cavalcante, Mabia
    Magalhaes, Mauricio F.
    Santos-Mendes, Rafael
    POSITIVE SYSTEMS, PROCEEDINGS, 2006, 341 : 375 - 382
  • [8] A walk on max-plus algebra
    Watanabe, Sennosuke
    Fukuda, Akiko
    Segawa, Etsuo
    Sato, Iwao
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 598 : 29 - 48
  • [9] Max-plus algebra and max-plus linear discrete event systems: An introduction
    De Schutter, Bart
    van den Boom, Ton
    WODES' 08: PROCEEDINGS OF THE 9TH INTERNATIONAL WORKSHOP ON DISCRETE EVENT SYSTEMS, 2008, : 36 - 42
  • [10] Memory Loss Property for Products of Random Matrices in the Max-Plus Algebra
    Merlet, Glenn
    MATHEMATICS OF OPERATIONS RESEARCH, 2010, 35 (01) : 160 - 172