Linear regression and filtering under nonstandard assumptions (arbitrary noise)

被引:25
|
作者
Granichin, O [1 ]
机构
[1] St Petersburg State Univ, Dept Math & Mech, St Petersburg 198904, Russia
关键词
filtering; linear regression; parameter estimation; prediction; randomized algorithm;
D O I
10.1109/TAC.2004.835585
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This note is devoted to parameter estimation in linear regression and filtering, where the observation noise does not possess any "nice" probabilistic properties. In particular, the noise might have an "Unknown-but-bounded" deterministic nature. The basic assumption is that the model regressors (inputs) are random. Optimal rates of convergence for the modified stochastic approximation and least-squares algorithms are established under some weak assumptions. Typical behavior of the algorithms in the presence of such deterministic noise is illustrated by numerical examples.
引用
收藏
页码:1830 / 1835
页数:6
相关论文
共 50 条
  • [32] Understanding and checking the assumptions of linear regression: a primer for medical researchers
    Casson, Robert J.
    Farmer, Lachlan D. M.
    CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2014, 42 (06): : 590 - 596
  • [33] Quantile Regression under Truncated, Censored and Dependent Assumptions
    Changsheng LIU
    Yunjiao LU
    Sili NIU
    Acta Mathematicae Applicatae Sinica, 2025, 41 (02) : 479 - 497
  • [34] The effect of strategic noise in linear regression
    Hossain, Safwan
    Shah, Nisarg
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2021, 35 (02)
  • [35] The effect of strategic noise in linear regression
    Safwan Hossain
    Nisarg Shah
    Autonomous Agents and Multi-Agent Systems, 2021, 35
  • [36] A Numerical Label Noise Filtering Algorithm for Regression Task
    Jiang G.
    Wang W.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2022, 59 (08): : 1639 - 1652
  • [37] H-infinity filtering for discrete-time switched linear systems under arbitrary switching
    Ding D.
    Yang G.
    Li X.
    Journal of Control Theory and Applications, 2011, 9 (2): : 261 - 266
  • [38] Polynomial regression under arbitrary product distributions
    Blais, Eric
    O'Donnell, Ryan
    Wimmer, Karl
    MACHINE LEARNING, 2010, 80 (2-3) : 273 - 294
  • [39] On the optimal linear filtering techniques for noise reduction
    Chen, Jingdong
    Benesty, Jacob
    Huang, Yiteng
    SPEECH COMMUNICATION, 2007, 49 (04) : 305 - 316
  • [40] White noise assumptions revisited: Regression metamodels and experimental designs in practice
    Kleijnen, Jack P. C.
    Proceedings of the 2006 Winter Simulation Conference, Vols 1-5, 2006, : 107 - 117