Linear regression and filtering under nonstandard assumptions (arbitrary noise)

被引:25
|
作者
Granichin, O [1 ]
机构
[1] St Petersburg State Univ, Dept Math & Mech, St Petersburg 198904, Russia
关键词
filtering; linear regression; parameter estimation; prediction; randomized algorithm;
D O I
10.1109/TAC.2004.835585
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This note is devoted to parameter estimation in linear regression and filtering, where the observation noise does not possess any "nice" probabilistic properties. In particular, the noise might have an "Unknown-but-bounded" deterministic nature. The basic assumption is that the model regressors (inputs) are random. Optimal rates of convergence for the modified stochastic approximation and least-squares algorithms are established under some weak assumptions. Typical behavior of the algorithms in the presence of such deterministic noise is illustrated by numerical examples.
引用
收藏
页码:1830 / 1835
页数:6
相关论文
共 50 条
  • [11] OPTIMUM FILTERING OF SIGNALS IN PRESENCE OF ARBITRARY NOISE
    SUDAKOV, SS
    TELECOMMUNICATIONS AND RADIO ENGINEER-USSR, 1966, (08): : 81 - &
  • [12] Optimal control and filtering for nonstandard singularly perturbed linear systems
    Kecman, V
    Gajic, Z
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1999, 22 (02) : 362 - 365
  • [13] Approximation of solutions of DDEs under nonstandard assumptions via Euler scheme
    Czyzewska, Natalia
    Morkisz, Pawel M.
    Przybylowicz, Pawel
    NUMERICAL ALGORITHMS, 2022, 91 (04) : 1829 - 1854
  • [14] Regularization under general noise assumptions
    Mathe, Peter
    Tautenhahn, Ulrich
    INVERSE PROBLEMS, 2011, 27 (03)
  • [15] Sensitivity of the General Linear Model to noise assumptions
    Chakraborty, Sujoy
    Li, Hang
    Fowler, Mark
    2019 IEEE 19TH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT 2019), 2019,
  • [16] Approximation of solutions of DDEs under nonstandard assumptions via Euler scheme
    Natalia Czyżewska
    Paweł M. Morkisz
    Paweł Przybyłowicz
    Numerical Algorithms, 2022, 91 : 1829 - 1854
  • [17] Linear filtering system with arbitrary initial conditions
    Wu, X
    Yau, SST
    PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, : 785 - 789
  • [18] FILTERING AND DENOISING IN LINEAR REGRESSION ANALYSIS
    Hassani, Hossein
    Mahmoudvand, Rahim
    Yarmohammadi, Masoud
    FLUCTUATION AND NOISE LETTERS, 2010, 9 (04): : 343 - 358
  • [19] Least absolute deviations regression under nonstandard conditions
    Rogers, AJ
    ECONOMETRIC THEORY, 2001, 17 (04) : 820 - 852
  • [20] OPTIMAL LINEAR FILTERING AND LAGGING FILTERING OF COLOURED NOISE
    ROBERTS, AP
    INTERNATIONAL JOURNAL OF CONTROL, 1968, 8 (04) : 401 - +