Linear regression and filtering under nonstandard assumptions (arbitrary noise)

被引:25
|
作者
Granichin, O [1 ]
机构
[1] St Petersburg State Univ, Dept Math & Mech, St Petersburg 198904, Russia
关键词
filtering; linear regression; parameter estimation; prediction; randomized algorithm;
D O I
10.1109/TAC.2004.835585
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This note is devoted to parameter estimation in linear regression and filtering, where the observation noise does not possess any "nice" probabilistic properties. In particular, the noise might have an "Unknown-but-bounded" deterministic nature. The basic assumption is that the model regressors (inputs) are random. Optimal rates of convergence for the modified stochastic approximation and least-squares algorithms are established under some weak assumptions. Typical behavior of the algorithms in the presence of such deterministic noise is illustrated by numerical examples.
引用
收藏
页码:1830 / 1835
页数:6
相关论文
共 50 条
  • [21] NONPARAMETRIC REGRESSION UNDER QUALITATIVE SMOOTHNESS ASSUMPTIONS
    MAMMEN, E
    ANNALS OF STATISTICS, 1991, 19 (02): : 741 - 759
  • [22] Testing model assumptions in multivariate linear regression models
    Dette, H
    Munk, A
    Wagner, T
    JOURNAL OF NONPARAMETRIC STATISTICS, 2000, 12 (03) : 309 - 342
  • [23] Nonlinear noise filtering with support vector regression
    Zhang Jian
    Peng Qicong
    Shao Huaizong
    Shao Tiange
    ISDA 2006: SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 1, 2006, : 172 - 176
  • [24] LINEAR-FILTERING IN MULTIPLICATIVE NOISE
    MOHANTY, NC
    SOONG, TT
    INFORMATION AND CONTROL, 1977, 34 (02): : 141 - 147
  • [25] Nonstandard Numerical Schemes for a Linear Stochastic Oscillator with Additive Noise
    姚金然
    甘四清
    JournalofDonghuaUniversity(EnglishEdition), 2017, 34 (05) : 694 - 701
  • [26] Randomized Controls for Linear Plants and Confidence Regions for Parameters under External Arbitrary Noise
    Amelin, Konstantin
    Granichin, Oleg
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 851 - 856
  • [27] Piecewise Linear Regression under Noise Level Variation via Convex Optimization
    Kuroda, Hiroki
    Ogata, Jun
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 2259 - 2263
  • [28] Slope Filtering: An FIR Approach to Linear Regression
    Turner, Clay S.
    IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (06) : 159 - +
  • [29] Quantile Regression under Truncated, Censored and Dependent Assumptions
    Chang-sheng Liu
    Yun-jiao Lu
    Si-li Niu
    Acta Mathematicae Applicatae Sinica, English Series, 2025, 41 (2): : 479 - 497
  • [30] ROUNDOFF NOISE OF ARBITRARY LINEAR DIGITAL NETWORKS
    KWAN, HK
    CONSTANTINIDES, AG
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1985, 33 (03): : 734 - 737