Non-trivial m-quasi-Einstein metrics on quadratic Lie groups

被引:1
|
作者
Chen, Zhiqi [1 ,2 ]
Liang, Ke [1 ,2 ]
Yi, Fahuai [3 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
关键词
m-quasi-Einstein metric; Left-invariant metric; Quadratic Lie group; Quadratic Lie algebra; Killing vector field; SCALAR CURVATURE; RICCI SOLITONS;
D O I
10.1007/s00013-016-0887-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We call a metric m-quasi-Einstein if (a modification of the m-Bakry-Emery Ricci tensor in terms of a suitable vector field X) is a constant multiple of the metric tensor. It is a generalization of Einstein metrics which contain Ricci solitons. In this paper, we focus on left-invariant vector fields and left-invariant Riemannian metrics on quadratic Lie groups. First we prove that any left-invariant vector field X such that the left-invariant Riemannian metric on a quadratic Lie group is m-quasi-Einstein is a Killing vector field. Then we construct infinitely many non-trivial m-quasi-Einstein metrics on solvable quadratic Lie groups G(n) for m finite.
引用
收藏
页码:391 / 399
页数:9
相关论文
共 50 条
  • [21] Representations of symmetric groups with non-trivial determinant
    Ayyer, Arvind
    Prasad, Amritanshu
    Spallone, Steven
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2017, 150 : 208 - 232
  • [22] NON-TRIVIAL CONFORMAL GROUPS IN RIEMANNIAN SPACES
    CHUPAKHIN, AP
    DOKLADY AKADEMII NAUK SSSR, 1979, 246 (05): : 1056 - 1058
  • [23] GENERALIZED m-QUASI-EINSTEIN STRUCTURE IN ALMOST KENMOTSU MANIFOLDS
    Khatri, Mohan
    Singh, Jay Prakash
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (03) : 717 - 732
  • [24] About an integral inequality and rigidity of m-quasi-Einstein manifolds
    Murilo Araújo
    Allan Freitas
    Márcio Santos
    Letters in Mathematical Physics, 113
  • [25] About an integral inequality and rigidity of m-quasi-Einstein manifolds
    Araujo, Murilo
    Freitas, Allan
    Santos, Marcio
    LETTERS IN MATHEMATICAL PHYSICS, 2023, 113 (06)
  • [26] On generalized m-quasi-Einstein manifolds with constant scalar curvature
    Hu, Zejun
    Li, Dehe
    Xu, Jing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 432 (02) : 733 - 743
  • [27] Finding non-trivial elements and splittings in groups
    Chiodo, Maurice
    JOURNAL OF ALGEBRA, 2011, 331 (01) : 271 - 284
  • [28] Odd generalized Einstein metrics on Lie groups
    Cortes, Vicente
    David, Liana
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2025,
  • [29] Indefinite Einstein metrics on nice Lie groups
    Conti, Diego
    Rossi, Federico A.
    FORUM MATHEMATICUM, 2020, 32 (06) : 1599 - 1619
  • [30] Indefinite Einstein Metrics on Simple Lie Groups
    Derdzinski, Andrzej
    Gal, Swiatoslaw R.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2014, 63 (01) : 165 - 212