Non-trivial m-quasi-Einstein metrics on quadratic Lie groups
被引:1
|
作者:
Chen, Zhiqi
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaNankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Chen, Zhiqi
[1
,2
]
Liang, Ke
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaNankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Liang, Ke
[1
,2
]
Yi, Fahuai
论文数: 0引用数: 0
h-index: 0
机构:
S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R ChinaNankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Yi, Fahuai
[3
]
机构:
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
We call a metric m-quasi-Einstein if (a modification of the m-Bakry-Emery Ricci tensor in terms of a suitable vector field X) is a constant multiple of the metric tensor. It is a generalization of Einstein metrics which contain Ricci solitons. In this paper, we focus on left-invariant vector fields and left-invariant Riemannian metrics on quadratic Lie groups. First we prove that any left-invariant vector field X such that the left-invariant Riemannian metric on a quadratic Lie group is m-quasi-Einstein is a Killing vector field. Then we construct infinitely many non-trivial m-quasi-Einstein metrics on solvable quadratic Lie groups G(n) for m finite.
机构:
Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R ChinaZhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
Hu, Zejun
Li, Dehe
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R ChinaZhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
Li, Dehe
Xu, Jing
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R ChinaZhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
机构:
Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 55, I-20125 Milan, ItalyUniv Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 55, I-20125 Milan, Italy