Non-trivial m-quasi-Einstein metrics on quadratic Lie groups

被引:1
|
作者
Chen, Zhiqi [1 ,2 ]
Liang, Ke [1 ,2 ]
Yi, Fahuai [3 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
关键词
m-quasi-Einstein metric; Left-invariant metric; Quadratic Lie group; Quadratic Lie algebra; Killing vector field; SCALAR CURVATURE; RICCI SOLITONS;
D O I
10.1007/s00013-016-0887-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We call a metric m-quasi-Einstein if (a modification of the m-Bakry-Emery Ricci tensor in terms of a suitable vector field X) is a constant multiple of the metric tensor. It is a generalization of Einstein metrics which contain Ricci solitons. In this paper, we focus on left-invariant vector fields and left-invariant Riemannian metrics on quadratic Lie groups. First we prove that any left-invariant vector field X such that the left-invariant Riemannian metric on a quadratic Lie group is m-quasi-Einstein is a Killing vector field. Then we construct infinitely many non-trivial m-quasi-Einstein metrics on solvable quadratic Lie groups G(n) for m finite.
引用
收藏
页码:391 / 399
页数:9
相关论文
共 50 条