Genome editing in Ustilago maydis using the CRISPR-Cas system

被引:154
|
作者
Schuster, Mariana [1 ]
Schweizer, Gabriel [1 ]
Reissmann, Stefanie [1 ]
Kahmann, Regine [1 ]
机构
[1] Max Planck Inst Terr Microbiol, Dept Organism Interact, Karl von Frisch Str 10, D-35043 Marburg, Germany
关键词
Cas9; Ustilago maydis; Plant pathogen; Biotrophic fungus; Reverse genetics; PATHOGENIC DEVELOPMENT; GENE; RNA; ALLELES; IDENTIFICATION; TRANSFORMATION; RECOGNITION; GENERATION; SITE;
D O I
10.1016/j.fgb.2015.09.001
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
This communication describes the establishment of the type II bacterial CRISPR-Cas9 system to efficiently disrupt target genes in the fungal maize pathogen Ustilogo maydis. A single step transformation of a self-replicating plasmid constitutively expressing the U. maydis codon-optimized cas9 gene and a suitable sgRNA under control of the U. maydis U6 snRNA promoter was sufficient to induce genome editing. On average 70% of the progeny of a single transformant were disrupted within the respective b gene. Without selection the self-replicating plasmid was lost rapidly allowing transient expression of the CRISPR-Cas9 system to minimize potential long-term negative effects of Cas9. This technology will be an important advance for the simultaneous disruption of functionally redundant genes and gene families to investigate their contribution to virulence of U. maydis. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:3 / 9
页数:7
相关论文
共 50 条
  • [41] CRISPR-Cas nucleases and base editors for plant genome editing
    Gurel, Filiz
    Zhang, Yingxiao
    Sretenovic, Simon
    Qi, Yiping
    ABIOTECH, 2020, 1 (01) : 74 - 87
  • [42] CRISPR-Cas Genome Editing in Ex Vivo Human Lungs
    Mesaki, K.
    Yamamoto, H.
    Juvet, S.
    Yeung, J.
    Guan, Z.
    Yao, Y.
    Chen, M.
    Gokhale, H.
    Shan, H.
    Wang, A.
    Wilson, G.
    Mariscal, A.
    Hu, J.
    Davidson, A.
    Kleinstiver, B.
    Cypel, M.
    Liu, M.
    Keshavjee, S.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2024, 43 (04): : S13 - S14
  • [43] CRISPR-Cas systems: ushering in the new genome editing era
    Rojo, Fernando Perez
    Nyman, Rikard Karl Martin
    Johnson, Alexander Arthur Theodore
    Navarro, Maria Pazos
    Ryan, Megan Helen
    Erskine, William
    Kaur, Parwinder
    BIOENGINEERED, 2018, 9 (01) : 214 - 221
  • [44] CRISPR-Cas nucleases and base editors for plant genome editing
    Filiz Gürel
    Yingxiao Zhang
    Simon Sretenovic
    Yiping Qi
    aBIOTECH, 2020, 1 : 74 - 87
  • [45] Exploiting CRISPR-Cas immune systems for genome editing in bacteria
    Barrangou, Rodolphe
    van Pijkeren, Jan-Peter
    CURRENT OPINION IN BIOTECHNOLOGY, 2016, 37 : 61 - 68
  • [46] Diversification of the CRISPR Toolbox: Applications of CRISPR-Cas Systems Beyond Genome Editing
    Balderston, Sarah
    Clouse, Gabrielle
    Ripoll, Juan-Jose
    Pratt, Grace K.
    Gasiunas, Giedrius
    Bock, Jens-Ole
    Bennett, Eric Paul
    Aran, Kiana
    CRISPR JOURNAL, 2021, 4 (03): : 400 - 415
  • [47] CRISPR-Cas genome editing system: A versatile tool for developing disease resistant crops
    Talakayala, Ashwini
    Ankanagari, Srinivas
    Garladinne, Mallikarjuna
    PLANT STRESS, 2022, 3
  • [48] Endogenous CRISPR-Cas System-Based Genome Editing and Antimicrobials: Review and Prospects
    Li, Yingjun
    Peng, Nan
    FRONTIERS IN MICROBIOLOGY, 2019, 10
  • [49] Editing plants for virus resistance using CRISPR-Cas
    Green, J. C.
    Hu, J. S.
    ACTA VIROLOGICA, 2017, 61 (02) : 138 - 142
  • [50] GENERATION OF IL1β-RESISTANT CHONDROCYTES USING CRISPR-CAS GENOME EDITING
    Karlsen, T. A.
    Pernas, P. F.
    Staerk, J.
    Caglayan, S.
    Brinchmann, J. E.
    OSTEOARTHRITIS AND CARTILAGE, 2016, 24 : S325 - S325