Genome editing in Ustilago maydis using the CRISPR-Cas system

被引:154
|
作者
Schuster, Mariana [1 ]
Schweizer, Gabriel [1 ]
Reissmann, Stefanie [1 ]
Kahmann, Regine [1 ]
机构
[1] Max Planck Inst Terr Microbiol, Dept Organism Interact, Karl von Frisch Str 10, D-35043 Marburg, Germany
关键词
Cas9; Ustilago maydis; Plant pathogen; Biotrophic fungus; Reverse genetics; PATHOGENIC DEVELOPMENT; GENE; RNA; ALLELES; IDENTIFICATION; TRANSFORMATION; RECOGNITION; GENERATION; SITE;
D O I
10.1016/j.fgb.2015.09.001
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
This communication describes the establishment of the type II bacterial CRISPR-Cas9 system to efficiently disrupt target genes in the fungal maize pathogen Ustilogo maydis. A single step transformation of a self-replicating plasmid constitutively expressing the U. maydis codon-optimized cas9 gene and a suitable sgRNA under control of the U. maydis U6 snRNA promoter was sufficient to induce genome editing. On average 70% of the progeny of a single transformant were disrupted within the respective b gene. Without selection the self-replicating plasmid was lost rapidly allowing transient expression of the CRISPR-Cas9 system to minimize potential long-term negative effects of Cas9. This technology will be an important advance for the simultaneous disruption of functionally redundant genes and gene families to investigate their contribution to virulence of U. maydis. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:3 / 9
页数:7
相关论文
共 50 条
  • [31] CRISPR-Cas Systems and Genome Editing: Beginning the Era of CRISPR/Cas Therapies for Humans
    Karpov, Dmitry S.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (10)
  • [32] Genome editing with the CRISPR-Cas system: an art, ethics and global regulatory perspective
    Zhang, Debin
    Hussain, Amjad
    Manghwar, Hakim
    Xie, Kabin
    Xie, Shengsong
    Zhao, Shuhong
    Larkin, Robert M.
    Qing, Ping
    Jin, Shuangxia
    Ding, Fang
    PLANT BIOTECHNOLOGY JOURNAL, 2020, 18 (08) : 1651 - 1669
  • [33] CRISPR-Cas system: Toward a more efficient technology for genome editing and beyond
    Ahmadzadeh, Vahideh
    Farajnia, Safar
    Baghban, Roghayyeh
    Rahbarnia, Leila
    Zarredar, Habib
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2019, 120 (10) : 16379 - 16392
  • [34] Recent trends in CRISPR-Cas system: genome, epigenome, and transcriptome editing and CRISPR delivery systems
    Bae, Taegeun
    Hur, Junseok W.
    Kim, Dokyoung
    Hur, Junho K.
    GENES & GENOMICS, 2019, 41 (08) : 871 - 877
  • [35] Recent trends in CRISPR-Cas system: genome, epigenome, and transcriptome editing and CRISPR delivery systems
    Taegeun Bae
    Junseok W. Hur
    Dokyoung Kim
    Junho K. Hur
    Genes & Genomics, 2019, 41 : 871 - 877
  • [36] Targeted Genome and Epigenome Editing Using Engineered CRISPR-Cas and TALE Technologies
    Joung, J. Keith
    HUMAN GENE THERAPY, 2014, 25 (11) : A10 - A10
  • [37] Transgene-Free Genome Editing in Caenorhabditis elegans Using CRISPR-Cas
    Chiu, Hui
    Schwartz, Hillel T.
    Antoshechkin, Igor
    Sternberg, Paul W.
    GENETICS, 2013, 195 (03): : 1167 - 1171
  • [38] Structural biology of CRISPR-Cas immunity and genome editing enzymes
    Wang, Joy Y.
    Pausch, Patrick
    Doudna, Jennifer A.
    NATURE REVIEWS MICROBIOLOGY, 2022, 20 (11) : 641 - 656
  • [39] Progress of CRISPR-Cas Based Genome Editing in Photosynthetic Microbes
    Naduthodi, Mihris Ibnu Saleem
    Barbosa, Maria J.
    van der Oost, John
    BIOTECHNOLOGY JOURNAL, 2018, 13 (09)
  • [40] CRISPR-Cas for genome editing: Classification, mechanism, designing and applications
    Bhatia, Simran
    Pooja, Sudesh Kumar
    Yadav, Sudesh Kumar
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 238