Genome editing in Ustilago maydis using the CRISPR-Cas system

被引:154
|
作者
Schuster, Mariana [1 ]
Schweizer, Gabriel [1 ]
Reissmann, Stefanie [1 ]
Kahmann, Regine [1 ]
机构
[1] Max Planck Inst Terr Microbiol, Dept Organism Interact, Karl von Frisch Str 10, D-35043 Marburg, Germany
关键词
Cas9; Ustilago maydis; Plant pathogen; Biotrophic fungus; Reverse genetics; PATHOGENIC DEVELOPMENT; GENE; RNA; ALLELES; IDENTIFICATION; TRANSFORMATION; RECOGNITION; GENERATION; SITE;
D O I
10.1016/j.fgb.2015.09.001
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
This communication describes the establishment of the type II bacterial CRISPR-Cas9 system to efficiently disrupt target genes in the fungal maize pathogen Ustilogo maydis. A single step transformation of a self-replicating plasmid constitutively expressing the U. maydis codon-optimized cas9 gene and a suitable sgRNA under control of the U. maydis U6 snRNA promoter was sufficient to induce genome editing. On average 70% of the progeny of a single transformant were disrupted within the respective b gene. Without selection the self-replicating plasmid was lost rapidly allowing transient expression of the CRISPR-Cas9 system to minimize potential long-term negative effects of Cas9. This technology will be an important advance for the simultaneous disruption of functionally redundant genes and gene families to investigate their contribution to virulence of U. maydis. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:3 / 9
页数:7
相关论文
共 50 条
  • [21] Genome Editing of Veterinary Relevant Mycoplasmas Using a CRISPR-Cas Base Editor System
    Ipoutcha, Thomas
    Rideau, Fabien
    Gourgues, Geraldine
    Arfi, Yonathan
    Lartigue, Carole
    Blanchard, Alain
    Sirand-Pugnet, Pascal
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2022, 88 (17)
  • [22] CRISPR-Cas System: History and Prospects as a Genome Editing Tool in Microorganisms
    Javed, Muhammad R.
    Sadaf, Maria
    Ahmed, Temoor
    Jamil, Amna
    Nawaz, Marium
    Abbas, Hira
    Ijaz, Anam
    CURRENT MICROBIOLOGY, 2018, 75 (12) : 1675 - 1683
  • [23] FUNCTIONAL GENOMICS A novel CRISPR-Cas system for easier genome editing?
    Osorio, Joana
    NATURE REVIEWS GENETICS, 2015, 16 (12) : 687 - 687
  • [24] Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing
    Xu, Xiaoshu
    Chemparathy, Augustine
    Zeng, Leiping
    Kempton, Hannah R.
    Shang, Stephen
    Nakamura, Muneaki
    Qi, Lei S.
    MOLECULAR CELL, 2021, 81 (20) : 4333 - +
  • [25] CRISPR-Cas System: History and Prospects as a Genome Editing Tool in Microorganisms
    Muhammad R. Javed
    Maria Sadaf
    Temoor Ahmed
    Amna Jamil
    Marium Nawaz
    Hira Abbas
    Anam Ijaz
    Current Microbiology, 2018, 75 : 1675 - 1683
  • [26] Targeted genome and epigenome editing using CRISPR-Cas and TALE technologies
    Joung, Keith
    TRANSGENIC RESEARCH, 2014, 23 (05) : 840 - 840
  • [27] CRISPR-Cas systems for genome editing of mammalian cells
    Mani, Indra
    Arazoe, Takayuki
    Singh, Vijai
    REPROGRAMMING THE GENOME: CRISPR-CAS-BASED HUMAN DISEASE THERAPY, 2021, 181 : 15 - 30
  • [28] Simplified CRISPR-Cas genome editing for Saccharomyces cerevisiae
    Generoso, Wesley Cardoso
    Gottardi, Manuela
    Oreb, Mislay
    Boles, Eckhard
    JOURNAL OF MICROBIOLOGICAL METHODS, 2016, 127 : 203 - 205
  • [29] Harnessing CRISPR-Cas systems for bacterial genome editing
    Selle, Kurt
    Barrangou, Rodolphe
    TRENDS IN MICROBIOLOGY, 2015, 23 (04) : 225 - 232
  • [30] Development of CRISPR-Cas systems for genome editing and beyond
    Zhang, F.
    QUARTERLY REVIEWS OF BIOPHYSICS, 2019, 52