A new trust region method for nonsmooth nonconvex optimization

被引:12
|
作者
Hoseini, N. [1 ]
Nobakhtian, S. [1 ,2 ]
机构
[1] Univ Isfahan, Dept Math, Esfahan, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
Nonlinear programming; nonsmoothness; Goldstein epsilon-subdifferential; trust region methods; global convergence; GLOBAL CONVERGENCE; BUNDLE METHOD; UNCONSTRAINED MINIMIZATION; ALGORITHM;
D O I
10.1080/02331934.2018.1470175
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we propose a nonsmooth trust region algorithm for nonconvex optimization problems. The algorithm is based on notion of the Goldstein epsilon-subdifferential, which are subgradients computed in some neighbourhoods of a point. The proposed method contains a new quadratic model of the classical trust region method, in which the gradient vector is replaced by a quasisecant. Then we apply a combined approach based on the Cauchy point and the dog-leg methods in order to solve the obtained model. The global convergence is established under some suitable assumptions. Finally, the algorithm is implemented in the MATLAB environment and applied on some nonsmooth test problems. Numerical results on some small-scale and large-scale nonsmooth optimization test problems illustrate the efficiency of the proposed algorithm in the practical computation.
引用
收藏
页码:1265 / 1286
页数:22
相关论文
共 50 条
  • [41] Constrained Nonconvex Nonsmooth Optimization via Proximal Bundle Method
    Yang Yang
    Liping Pang
    Xuefei Ma
    Jie Shen
    Journal of Optimization Theory and Applications, 2014, 163 : 900 - 925
  • [42] A Simple Proximal Stochastic Gradient Method for Nonsmooth Nonconvex Optimization
    Li, Zhize
    Li, Jian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [43] An inexact regularized proximal Newton method for nonconvex and nonsmooth optimization
    Ruyu Liu
    Shaohua Pan
    Yuqia Wu
    Xiaoqi Yang
    Computational Optimization and Applications, 2024, 88 : 603 - 641
  • [44] A Triple Stabilized Bundle Method for Constrained Nonconvex Nonsmooth Optimization
    Dembele, Andre
    Ndiaye, Babacar M.
    Ouorou, Adam
    Degla, Guy
    ADVANCED COMPUTATIONAL METHODS FOR KNOWLEDGE ENGINEERING (ICCSAMA 2019), 2020, 1121 : 75 - 87
  • [45] Weak subgradient method for solving nonsmooth nonconvex optimization problems
    Yalcin, Gulcin Dinc
    Kasimbeyli, Refail
    OPTIMIZATION, 2021, 70 (07) : 1513 - 1553
  • [46] Constrained Nonconvex Nonsmooth Optimization via Proximal Bundle Method
    Yang, Yang
    Pang, Liping
    Ma, Xuefei
    Shen, Jie
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 163 (03) : 900 - 925
  • [47] Proximal gradient method for nonconvex and nonsmooth optimization on Hadamard manifolds
    Feng, Shuailing
    Huang, Wen
    Song, Lele
    Ying, Shihui
    Zeng, Tieyong
    OPTIMIZATION LETTERS, 2022, 16 (08) : 2277 - 2297
  • [48] Proximal gradient method for nonconvex and nonsmooth optimization on Hadamard manifolds
    Shuailing Feng
    Wen Huang
    Lele Song
    Shihui Ying
    Tieyong Zeng
    Optimization Letters, 2022, 16 : 2277 - 2297
  • [49] A proximal trust-region method for nonsmooth optimization with inexact function and gradient evaluations
    Robert J. Baraldi
    Drew P. Kouri
    Mathematical Programming, 2023, 201 : 559 - 598
  • [50] A PROXIMAL QUASI-NEWTON TRUST-REGION METHOD FOR NONSMOOTH REGULARIZED OPTIMIZATION
    Aravkin, Aleksandr Y.
    Baraldi, Robert
    Orban, Dominique
    SIAM JOURNAL ON OPTIMIZATION, 2022, 32 (02) : 900 - 929