Proximal gradient method for nonconvex and nonsmooth optimization on Hadamard manifolds

被引:2
|
作者
Feng, Shuailing [1 ]
Huang, Wen [2 ]
Song, Lele [1 ]
Ying, Shihui [1 ]
Zeng, Tieyong [3 ]
机构
[1] Shanghai Univ, Sch Sci, Dept Math, Shanghai 200444, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[3] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Proximal gradient method; Hadamard manifolds; Manifold optimization; Convergence analysis; ALTERNATING MINIMIZATION; POINT METHOD; CONVERGENCE; ALGORITHMS;
D O I
10.1007/s11590-021-01822-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we address the minimizing problem of the nonconvex and nonsmooth functions on Hadamard manifolds, and develop an improved proximal gradient method. First, by utilizing the geometric structure of non-positive curvature manifolds, we propose a monotone proximal gradient algorithm with fixed step size on Hadamard manifolds. Then, a convergence theorem of the proposed method has been established under the reasonable definition of proximal gradient mapping on manifolds. If the function further satisfies the Riemannian Kurdyka-Lojasiewicz (KL) property with an exponent, the local convergence rate is given. Finally, numerical experiments on a special Hadamard manifold, named symmetric positive definite matrix manifold, show the advantages of the proposed method.
引用
收藏
页码:2277 / 2297
页数:21
相关论文
共 50 条
  • [1] Proximal gradient method for nonconvex and nonsmooth optimization on Hadamard manifolds
    Shuailing Feng
    Wen Huang
    Lele Song
    Shihui Ying
    Tieyong Zeng
    Optimization Letters, 2022, 16 : 2277 - 2297
  • [2] A Simple Proximal Stochastic Gradient Method for Nonsmooth Nonconvex Optimization
    Li, Zhize
    Li, Jian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [3] General inertial proximal gradient method for a class of nonconvex nonsmooth optimization problems
    Wu, Zhongming
    Li, Min
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 73 (01) : 129 - 158
  • [4] General inertial proximal gradient method for a class of nonconvex nonsmooth optimization problems
    Zhongming Wu
    Min Li
    Computational Optimization and Applications, 2019, 73 : 129 - 158
  • [5] A Nonconvex Proximal Bundle Method for Nonsmooth Constrained Optimization
    Shen, Jie
    Guo, Fang-Fang
    Xu, Na
    Complexity, 2024, 2024
  • [6] Proximal Bundle Method for Nonsmooth and Nonconvex Multiobjective Optimization
    Makela, Marko M.
    Karmitsa, Napsu
    Wilppu, Outi
    MATHEMATICAL MODELING AND OPTIMIZATION OF COMPLEX STRUCTURES, 2016, 40 : 191 - 204
  • [7] A Nonconvex Proximal Bundle Method for Nonsmooth Constrained Optimization
    Shen, Jie
    Guo, Fang-Fang
    Xu, Na
    COMPLEXITY, 2024, 2024
  • [8] Proximal point method for a special class of nonconvex functions on Hadamard manifolds
    Bento, G. C.
    Ferreira, O. P.
    Oliveira, P. R.
    OPTIMIZATION, 2015, 64 (02) : 289 - 319
  • [9] Proximal ADMM for nonconvex and nonsmooth optimization
    Yang, Yu
    Jia, Qing-Shan
    Xu, Zhanbo
    Guan, Xiaohong
    Spanos, Costas J.
    AUTOMATICA, 2022, 146
  • [10] A filter proximal bundle method for nonsmooth nonconvex constrained optimization
    Najmeh Hoseini Monjezi
    S. Nobakhtian
    Journal of Global Optimization, 2021, 79 : 1 - 37