Proximal gradient method for nonconvex and nonsmooth optimization on Hadamard manifolds

被引:2
|
作者
Feng, Shuailing [1 ]
Huang, Wen [2 ]
Song, Lele [1 ]
Ying, Shihui [1 ]
Zeng, Tieyong [3 ]
机构
[1] Shanghai Univ, Sch Sci, Dept Math, Shanghai 200444, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[3] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Proximal gradient method; Hadamard manifolds; Manifold optimization; Convergence analysis; ALTERNATING MINIMIZATION; POINT METHOD; CONVERGENCE; ALGORITHMS;
D O I
10.1007/s11590-021-01822-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we address the minimizing problem of the nonconvex and nonsmooth functions on Hadamard manifolds, and develop an improved proximal gradient method. First, by utilizing the geometric structure of non-positive curvature manifolds, we propose a monotone proximal gradient algorithm with fixed step size on Hadamard manifolds. Then, a convergence theorem of the proposed method has been established under the reasonable definition of proximal gradient mapping on manifolds. If the function further satisfies the Riemannian Kurdyka-Lojasiewicz (KL) property with an exponent, the local convergence rate is given. Finally, numerical experiments on a special Hadamard manifold, named symmetric positive definite matrix manifold, show the advantages of the proposed method.
引用
收藏
页码:2277 / 2297
页数:21
相关论文
共 50 条
  • [31] VARIABLE METRIC PROXIMAL STOCHASTIC VARIANCE REDUCED GRADIENT METHODS FOR NONCONVEX NONSMOOTH OPTIMIZATION
    Yu, Tengteng
    Liu, Xin-wei
    Dai, Yu-hong
    Sun, J. I. E.
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2022, 18 (04) : 2611 - 2631
  • [32] STOCHASTIC ALTERNATING STRUCTURE-ADAPTED PROXIMAL GRADIENT DESCENT METHOD WITH VARIANCE REDUCTION FOR NONCONVEX NONSMOOTH OPTIMIZATION
    Jia, Zehui
    Zhang, Wenxing
    Cai, Xingju
    Han, Deren
    MATHEMATICS OF COMPUTATION, 2024, 93 (348) : 1677 - 1714
  • [33] New proximal bundle algorithm based on the gradient sampling method for nonsmooth nonconvex optimization with exact and inexact information
    Monjezi, N. Hoseini
    Nobakhtian, S.
    NUMERICAL ALGORITHMS, 2023, 94 (02) : 765 - 787
  • [34] Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds
    Bento, G. C.
    Ferreira, O. P.
    Oliveira, P. R.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (02) : 564 - 572
  • [35] A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes
    Joki, Kaisa
    Bagirov, Adil M.
    Karmitsa, Napsu
    Makela, Marko M.
    JOURNAL OF GLOBAL OPTIMIZATION, 2017, 68 (03) : 501 - 535
  • [36] Linear convergence of proximal incremental aggregated gradient method for nonconvex nonsmooth minimization problems
    Liu, Y. C.
    Xia, F. Q.
    APPLICABLE ANALYSIS, 2022, 101 (09) : 3445 - 3464
  • [37] A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes
    Kaisa Joki
    Adil M. Bagirov
    Napsu Karmitsa
    Marko M. Mäkelä
    Journal of Global Optimization, 2017, 68 : 501 - 535
  • [38] Proximal Dogleg Opportunistic Majorization for Nonconvex and Nonsmooth Optimization
    Zhou, Yiming
    Dai, Wei
    arXiv,
  • [39] PROXIMAL GRADIENT METHOD FOR NONSMOOTH OPTIMIZATION OVER THE STIEFEL MANIFOLD
    Chen, Shixiang
    Ma, Shiqian
    So, Anthony Man-Cho
    Zhang, Tong
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (01) : 210 - 239
  • [40] A UNIFIED PROXIMAL GRADIENT METHOD FOR NONCONVEX COMPOSITE OPTIMIZATION WITH EXTRAPOLATION
    Zhang, Miao
    Zhang, Hongchao
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2024,