Proximal gradient method for nonconvex and nonsmooth optimization on Hadamard manifolds

被引:2
|
作者
Feng, Shuailing [1 ]
Huang, Wen [2 ]
Song, Lele [1 ]
Ying, Shihui [1 ]
Zeng, Tieyong [3 ]
机构
[1] Shanghai Univ, Sch Sci, Dept Math, Shanghai 200444, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[3] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Proximal gradient method; Hadamard manifolds; Manifold optimization; Convergence analysis; ALTERNATING MINIMIZATION; POINT METHOD; CONVERGENCE; ALGORITHMS;
D O I
10.1007/s11590-021-01822-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we address the minimizing problem of the nonconvex and nonsmooth functions on Hadamard manifolds, and develop an improved proximal gradient method. First, by utilizing the geometric structure of non-positive curvature manifolds, we propose a monotone proximal gradient algorithm with fixed step size on Hadamard manifolds. Then, a convergence theorem of the proposed method has been established under the reasonable definition of proximal gradient mapping on manifolds. If the function further satisfies the Riemannian Kurdyka-Lojasiewicz (KL) property with an exponent, the local convergence rate is given. Finally, numerical experiments on a special Hadamard manifold, named symmetric positive definite matrix manifold, show the advantages of the proposed method.
引用
收藏
页码:2277 / 2297
页数:21
相关论文
共 50 条
  • [21] General inertial proximal stochastic variance reduction gradient for nonconvex nonsmooth optimization
    Shuya Sun
    Lulu He
    Journal of Inequalities and Applications, 2023
  • [22] Faster Gradient-Free Proximal Stochastic Methods for Nonconvex Nonsmooth Optimization
    Huang, Feihu
    Gu, Bin
    Huo, Zhouyuan
    Chen, Songcan
    Huang, Heng
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 1503 - 1510
  • [23] An inexact proximal gradient algorithm with extrapolation for a class of nonconvex nonsmooth optimization problems
    Zehui Jia
    Zhongming Wu
    Xiaomei Dong
    Journal of Inequalities and Applications, 2019
  • [24] Proximal point method for vector optimization on Hadamard manifolds
    Bento, Glaydston de C.
    Ferreira, Orizon P.
    Pereira, Yuri R. L.
    OPERATIONS RESEARCH LETTERS, 2018, 46 (01) : 13 - 18
  • [25] A proximal bundle method for constrained nonsmooth nonconvex optimization with inexact information
    Jian Lv
    Li-Ping Pang
    Fan-Yun Meng
    Journal of Global Optimization, 2018, 70 : 517 - 549
  • [26] A proximal bundle method for constrained nonsmooth nonconvex optimization with inexact information
    Lv, Jian
    Pang, Li-Ping
    Meng, Fan-Yun
    JOURNAL OF GLOBAL OPTIMIZATION, 2018, 70 (03) : 517 - 549
  • [27] A proximal bundle method for a class of nonconvex nonsmooth composite optimization problems
    Pang, Liping
    Wang, Xiaoliang
    Meng, Fanyun
    JOURNAL OF GLOBAL OPTIMIZATION, 2023, 86 (03) : 589 - 620
  • [28] A proximal bundle method for a class of nonconvex nonsmooth composite optimization problems
    Liping Pang
    Xiaoliang Wang
    Fanyun Meng
    Journal of Global Optimization, 2023, 86 : 589 - 620
  • [29] A note on the accelerated proximal gradient method for nonconvex optimization
    Wang, Huijuan
    Xu, Hong-Kun
    CARPATHIAN JOURNAL OF MATHEMATICS, 2018, 34 (03) : 449 - 457
  • [30] New proximal bundle algorithm based on the gradient sampling method for nonsmooth nonconvex optimization with exact and inexact information
    N. Hoseini Monjezi
    S. Nobakhtian
    Numerical Algorithms, 2023, 94 : 765 - 787