Proximal gradient method for nonconvex and nonsmooth optimization on Hadamard manifolds

被引:2
|
作者
Feng, Shuailing [1 ]
Huang, Wen [2 ]
Song, Lele [1 ]
Ying, Shihui [1 ]
Zeng, Tieyong [3 ]
机构
[1] Shanghai Univ, Sch Sci, Dept Math, Shanghai 200444, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[3] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Proximal gradient method; Hadamard manifolds; Manifold optimization; Convergence analysis; ALTERNATING MINIMIZATION; POINT METHOD; CONVERGENCE; ALGORITHMS;
D O I
10.1007/s11590-021-01822-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we address the minimizing problem of the nonconvex and nonsmooth functions on Hadamard manifolds, and develop an improved proximal gradient method. First, by utilizing the geometric structure of non-positive curvature manifolds, we propose a monotone proximal gradient algorithm with fixed step size on Hadamard manifolds. Then, a convergence theorem of the proposed method has been established under the reasonable definition of proximal gradient mapping on manifolds. If the function further satisfies the Riemannian Kurdyka-Lojasiewicz (KL) property with an exponent, the local convergence rate is given. Finally, numerical experiments on a special Hadamard manifold, named symmetric positive definite matrix manifold, show the advantages of the proposed method.
引用
收藏
页码:2277 / 2297
页数:21
相关论文
共 50 条
  • [41] Subgradient Method for Nonconvex Nonsmooth Optimization
    A. M. Bagirov
    L. Jin
    N. Karmitsa
    A. Al Nuaimat
    N. Sultanova
    Journal of Optimization Theory and Applications, 2013, 157 : 416 - 435
  • [42] Subgradient Method for Nonconvex Nonsmooth Optimization
    Bagirov, A. M.
    Jin, L.
    Karmitsa, N.
    Al Nuaimat, A.
    Sultanova, N.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 157 (02) : 416 - 435
  • [43] Smoothing randomized block-coordinate proximal gradient algorithms for nonsmooth nonconvex composite optimization
    Li, Xue
    Bian, Wei
    NUMERICAL ALGORITHMS, 2024,
  • [44] Variable smoothing incremental aggregated gradient method for nonsmooth nonconvex regularized optimization
    Yuncheng Liu
    Fuquan Xia
    Optimization Letters, 2021, 15 : 2147 - 2164
  • [45] Variable smoothing incremental aggregated gradient method for nonsmooth nonconvex regularized optimization
    Liu, Yuncheng
    Xia, Fuquan
    OPTIMIZATION LETTERS, 2021, 15 (06) : 2147 - 2164
  • [46] Convergence of the gradient sampling algorithm for nonsmooth nonconvex optimization
    Kiwiel, Krzysztof C.
    SIAM JOURNAL ON OPTIMIZATION, 2007, 18 (02) : 379 - 388
  • [47] Gradient set splitting in nonconvex nonsmooth numerical optimization
    Gaudioso, Manlio
    Gorgone, Enrico
    OPTIMIZATION METHODS & SOFTWARE, 2010, 25 (01): : 59 - 74
  • [48] A robust gradient sampling algorithm for nonsmooth, nonconvex optimization
    Burke, JV
    Lewis, AS
    Overton, ML
    SIAM JOURNAL ON OPTIMIZATION, 2005, 15 (03) : 751 - 779
  • [49] A nonmonotone accelerated proximal gradient method with variable stepsize strategy for nonsmooth and nonconvex minimization problems
    Liu, Hongwei
    Wang, Ting
    Liu, Zexian
    JOURNAL OF GLOBAL OPTIMIZATION, 2024, 89 (04) : 863 - 897
  • [50] An Adaptive Proximal Bundle Method with Inexact Oracles for a Class of Nonconvex and Nonsmooth Composite Optimization
    Wang, Xiaoliang
    Pang, Liping
    Wu, Qi
    Zhang, Mingkun
    MATHEMATICS, 2021, 9 (08)