An inexact regularized proximal Newton method for nonconvex and nonsmooth optimization

被引:0
|
作者
Ruyu Liu
Shaohua Pan
Yuqia Wu
Xiaoqi Yang
机构
[1] South China University of Technology,School of Mathematics
[2] The Hong Kong Polytechnic University,Department of Applied Mathematics
关键词
Nonconvex and nonsmooth optimization; Regularized proximal Newton method; Global convergence; Convergence rate; KL function; Metric ; -subregularity; 90C26; 49M15; 90C55;
D O I
暂无
中图分类号
学科分类号
摘要
This paper focuses on the minimization of a sum of a twice continuously differentiable function f and a nonsmooth convex function. An inexact regularized proximal Newton method is proposed by an approximation to the Hessian of f involving the ϱ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varrho $$\end{document}th power of the KKT residual. For ϱ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varrho =0$$\end{document}, we justify the global convergence of the iterate sequence for the KL objective function and its R-linear convergence rate for the KL objective function of exponent 1/2. For ϱ∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varrho \in (0,1)$$\end{document}, by assuming that cluster points satisfy a locally Hölderian error bound of order q on a second-order stationary point set and a local error bound of order q>1+ϱ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q>1\!+\!\varrho $$\end{document} on the common stationary point set, respectively, we establish the global convergence of the iterate sequence and its superlinear convergence rate with order depending on q and ϱ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varrho $$\end{document}. A dual semismooth Newton augmented Lagrangian method is also developed for seeking an inexact minimizer of subproblems. Numerical comparisons with two state-of-the-art methods on ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}-regularized Student’s t-regressions, group penalized Student’s t-regressions, and nonconvex image restoration confirm the efficiency of the proposed method.
引用
收藏
页码:603 / 641
页数:38
相关论文
共 50 条
  • [1] An inexact regularized proximal Newton method for nonconvex and nonsmooth optimization
    Liu, Ruyu
    Pan, Shaohua
    Wu, Yuqia
    Yang, Xiaoqi
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2024, 88 (02) : 603 - 641
  • [2] AN INEXACT REGULARIZED PROXIMAL NEWTON-TYPE METHOD FOR NONCONVEX COMPOSITE OPTIMIZATION PROBLEMS
    Zhu, Danqi
    Wu, Can
    Lit, Dong-Hui
    PACIFIC JOURNAL OF OPTIMIZATION, 2024, 20 (04): : 629 - 644
  • [3] A proximal bundle method for constrained nonsmooth nonconvex optimization with inexact information
    Lv, Jian
    Pang, Li-Ping
    Meng, Fan-Yun
    JOURNAL OF GLOBAL OPTIMIZATION, 2018, 70 (03) : 517 - 549
  • [4] A proximal bundle method for constrained nonsmooth nonconvex optimization with inexact information
    Jian Lv
    Li-Ping Pang
    Fan-Yun Meng
    Journal of Global Optimization, 2018, 70 : 517 - 549
  • [5] An Inexact Proximal Newton Method for Nonconvex Composite Minimization
    Zhu, Hong
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 102 (03)
  • [6] A proximal bundle method for nonsmooth nonconvex functions with inexact information
    W. Hare
    C. Sagastizábal
    M. Solodov
    Computational Optimization and Applications, 2016, 63 : 1 - 28
  • [7] An Adaptive Proximal Bundle Method with Inexact Oracles for a Class of Nonconvex and Nonsmooth Composite Optimization
    Wang, Xiaoliang
    Pang, Liping
    Wu, Qi
    Zhang, Mingkun
    MATHEMATICS, 2021, 9 (08)
  • [8] A proximal bundle method for nonsmooth nonconvex functions with inexact information
    Hare, W.
    Sagastizabal, C.
    Solodov, M.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 63 (01) : 1 - 28
  • [9] A REDISTRIBUTED PROXIMAL BUNDLE METHOD FOR NONSMOOTH NONCONVEX FUNCTIONS WITH INEXACT INFORMATION
    Huang, M. I. N. G.
    Niu, Hui-min
    Lin, Si-da
    Yin, Zi-ran
    Yuan, Jin-long
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (12) : 8691 - 8708
  • [10] An inexact Newton method for nonconvex equality constrained optimization
    Byrd, Richard H.
    Curtis, Frank E.
    Nocedal, Jorge
    MATHEMATICAL PROGRAMMING, 2010, 122 (02) : 273 - 299