RGB-D TERRAIN PERCEPTION AND DENSE MAPPING FOR LEGGED ROBOTS

被引:21
|
作者
Belter, Dominik [1 ]
Labecki, Przemyslaw [1 ]
Fankhauser, Peter [2 ]
Siegwart, Roland [2 ]
机构
[1] Poznan Univ Tech, Inst Control & Informat Engn, Ul Piotrowo 3A, PL-60965 Poznan, Poland
[2] ETH, Autonomous Syst Lab, LEE J 201,Leonhardstr 21, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
RGB-D perception; elevation mapping; uncertainty; legged robots; SIMULTANEOUS LOCALIZATION; WALKING ROBOT; RESOLUTION; MAPS;
D O I
10.1515/amcs-2016-0006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses the issues of unstructured terrain modeling for the purpose of navigation with legged robots. We present an improved elevation grid concept adopted to the specific requirements of a small legged robot with limited perceptual capabilities. We propose an extension of the elevation grid update mechanism by incorporating a formal treatment of the spatial uncertainty. Moreover, this paper presents uncertainty models for a structured light RGB-D sensor and a stereo vision camera used to produce a dense depth map. The model for the uncertainty of the stereo vision camera is based on uncertainty propagation from calibration, through undistortion and rectification algorithms, allowing calculation of the uncertainty of measured 3D point coordinates. The proposed uncertainty models were used for the construction of a terrain elevation map using the Videre Design STOC stereo vision camera and Kinect-like range sensors. We provide experimental verification of the proposed mapping method, and a comparison with another recently published terrain mapping method for walking robots.
引用
收藏
页码:81 / 97
页数:17
相关论文
共 50 条
  • [31] Dense Frame-to-Model SLAM with an RGB-D Camera
    Ye, Xiaodan
    Li, Jianing
    Wang, Lianghao
    Li, Dongxiao
    Zhang, Ming
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2017, PT I, 2018, 10735 : 588 - 597
  • [32] Dense Piecewise Planar RGB-D SLAM for Indoor Environments
    Le, Phi-Hung
    Kosecka, Jana
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 4944 - 4949
  • [33] The RGB-D Triathlon: Towards Agile Visual Toolboxes for Robots
    Cermelli, Fabio
    Mancini, Massimiliano
    Ricci, Elisa
    Caputo, Barbara
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 6097 - 6104
  • [34] Dense RGB-D visual odometry using inverse depth
    Gutierrez-Gomez, Daniel
    Mayol-Cuevas, Walterio
    Guerrero, J. J.
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2016, 75 : 571 - 583
  • [35] Efficient Incremental Map Segmentation in Dense RGB-D Maps
    Finman, Ross
    Whelan, Thomas
    Kaess, Michael
    Leonard, John J.
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 5488 - 5494
  • [36] PoseFusion: Dense RGB-D SLAM in Dynamic Human Environments
    Zhang, Tianwei
    Nakamura, Yoshihiko
    PROCEEDINGS OF THE 2018 INTERNATIONAL SYMPOSIUM ON EXPERIMENTAL ROBOTICS, 2020, 11 : 772 - 780
  • [37] RGB-D dense SLAM with keyframe-based method
    Fu, Xingyin
    Zhu, Feng
    Wu, Qingxiao
    Sun, Yunlei
    THREE-DIMENSIONAL IMAGE ACQUISITION AND DISPLAY TECHNOLOGY AND APPLICATIONS, 2018, 10845
  • [38] Robust Tracking and Mapping with a Handheld RGB-D Camera
    Lee, Kyoung-Rok
    Truong Nguyen
    2014 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2014, : 1120 - 1127
  • [39] Dense real-time mapping of object-class semantics from RGB-D video
    Jörg Stückler
    Benedikt Waldvogel
    Hannes Schulz
    Sven Behnke
    Journal of Real-Time Image Processing, 2015, 10 : 599 - 609
  • [40] Dense real-time mapping of object-class semantics from RGB-D video
    Stueckler, Joerg
    Waldvogel, Benedikt
    Schulz, Hannes
    Behnke, Sven
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2015, 10 (04) : 599 - 609