Dense real-time mapping of object-class semantics from RGB-D video

被引:42
|
作者
Stueckler, Joerg [1 ]
Waldvogel, Benedikt [1 ]
Schulz, Hannes [1 ]
Behnke, Sven [1 ]
机构
[1] Univ Bonn, Comp Sci Insitute 6, Autonomous Intelligent Syst, Bonn, Germany
关键词
Semantic maps; Simultaneous localization and semantic mapping; Object-class segmentation; Random decision forests; MAPS;
D O I
10.1007/s11554-013-0379-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a real-time approach to learn semantic maps from moving RGB-D cameras. Our method models geometry, appearance, and semantic labeling of surfaces. We recover camera pose using simultaneous localization and mapping while concurrently recognizing and segmenting object classes in the images. Our object-class segmentation approach is based on random decision forests and yields a dense probabilistic labeling of each image. We implemented it on GPU to achieve a high frame rate. The probabilistic segmentation is fused in octree-based 3D maps within a Bayesian framework. In this way, image segmentations from various view points are integrated within a 3D map which improves segmentation quality. We evaluate our system on a large benchmark dataset and demonstrate state-of-the-art recognition performance of our object-class segmentation and semantic mapping approaches.
引用
收藏
页码:599 / 609
页数:11
相关论文
共 50 条
  • [1] Dense real-time mapping of object-class semantics from RGB-D video
    Jörg Stückler
    Benedikt Waldvogel
    Hannes Schulz
    Sven Behnke
    Journal of Real-Time Image Processing, 2015, 10 : 599 - 609
  • [2] Semantic Mapping Using Object-Class Segmentation of RGB-D Images
    Stueckler, Joerg
    Biresev, Nenad
    Behnke, Sven
    2012 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2012, : 3005 - 3010
  • [3] Recurrent Convolutional Neural Networks for Object-Class Segmentation of RGB-D Video
    Pavel, Mircea Serban
    Schulz, Hannes
    Behnke, Sven
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [4] RGB-D Fusion: Real-time Robust Tracking and Dense Mapping with RGB-D Data Fusion
    Lee, Seong-Oh
    Lim, Hwasup
    Kim, Hyoung-Gon
    Ahn, Sang Chul
    2014 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2014), 2014, : 2749 - 2754
  • [5] Robust Real-Time Visual Odometry for Dense RGB-D Mapping
    Whelan, Thomas
    Johannsson, Hordur
    Kaess, Michael
    Leonard, John J.
    McDonald, John
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2013, : 5724 - 5731
  • [6] Automatic Video Segmentation and Object Tracking with Real-Time RGB-D Data
    Chen, I-Kuei
    Hsu, Szu-Lu
    Chi, Chung-Yu
    Chen, Liang-Gee
    2014 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2014, : 488 - 489
  • [7] Real-Time Visual Odometry from Dense RGB-D Images
    Steinbruecker, Frank
    Sturm, Juergen
    Cremers, Daniel
    2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCV WORKSHOPS), 2011,
  • [8] Real-time dense 3D object reconstruction using RGB-D sensor
    Ruchay, Alexey
    Dorofeev, Konstantin
    Kalschikov, Vsevolod
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XLIII, 2020, 11510
  • [9] Real-time object tracking combined RGB-D with MeanShift
    Wang G.
    Tian J.
    Zhu W.
    Fang D.
    Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2019, 50 (09): : 2163 - 2170
  • [10] Real-Time Video Inpainting for RGB-D Pipeline Reconstruction
    Wang, Luyuan
    Tian, Tina
    Yan, Xinzhi
    Ruan, Fujun
    Aadityaa, G. Jaya
    Choset, Howie
    Li, Lu
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 9543 - 9550